r₁ = distance of point A from charge q₁ = 0.13 m
r₂ = distance of point A from charge q₂ = 0.24 m
r₃ = distance of point A from charge q₃ = 0.13 m
Electric field by charge q₁ at A is given as
E₁ = k q₁ /r₁² = (9 x 10⁹) (2.30 x 10⁻¹²)/(0.13)² = 1.225 N/C towards right
Electric field by charge q₂ at A is given as
E₂ = k q₂ /r₂² = (9 x 10⁹) (4.50 x 10⁻¹²)/(0.24)² = 0.703 N/C towards left
Since the electric field in left direction is smaller, hence the electric field by the third charge must be in left direction
Electric field at A will be zero when
E₁ = E₂ + E₃
1.225 = 0.703 + E₃
E₃ = 0.522 N/C
Electric field by charge "q₃" is given as
E₃ = k q₃ /r₃²
0.522 = (9 x 10⁹) q₃/(0.13)²
q₃ = 0.980 x 10⁻¹² C = 0.980 pC
It is D because our eye lenses reflect the white light we see and it also reflects the light to a point to where we can see colors and objects clearly... Hope this helps out ^-^''
The resistance of a given conductor depends on its electrical resistivity (
), its length(L) and its cross-sectional area (A), as follows:

In this case, we have
,
and
. So, the total resistance of the wire with length of 138m is:

C. Chemical Energy is transformed to light energy and heat energy. The heat energy is keeping you warm and light energy is giving you the light you need to be able to read the book.
Answer: 
Explanation:
Given
Length of beam 
mass of beam 
Two forces of equal intensity acted in the opposite direction, therefore, they create a torque of magnitude

Also, the beam starts rotating about its center
So, the moment of inertia of the beam is

Torque is the product of moment of inertia and angular acceleration
