Acceleration is the change of velocity, and velocity is the change of distance. The opposite of finding change, or differentiation, is integration.
Acceleration = 1.3 m/s²
Velocity: ∫ 1.3 dx = 1.3x + c m/s
Distance: ∫ 1.3x dx = 1.3x²/2 + c m
Distance run: 1.3*3²/2 = 5.85 m
<em>What</em><em> </em><em>bad</em><em> </em><em>thing</em><em> </em><em>happened</em><em>?</em>
Hello!
===
When objects are heated, their molecules tend to vibrate fast. As they vibrate, the space between each atom increases. This keeps on happening, and the object expands until it has cooled down.
===
Hope this helps! :)
#1
As we are increasing the frequency in the simulation the wavelength is decreasing
So if speed remains constant then wavelength and frequency depends inversely on each other
If we are in boat and and moving over very small wavelengths then these small wavelength will be encountered continuously by the boat in short interval of times
#2
As we are changing the amplitude in the simulation there is no change in the speed frequency and wavelength.
So amplitude is independent of all these parameter
Amplitude of wave will decide the energy of wave
So light of greater intensity is the light of larger amplitude
#3
In our daily life we deal with two waves
1 sound waves
2 light waves
Answer:
See below ~
Explanation:
An object will sink in water when its density is greater than that of water, which is 1 g/cm³.
Volume of the box is <u>1331 cm³</u>. (11³)
Maximum mass of sand will be 1331 g. [because 1331/1331 = 1 g/cm³]
- Volume of sand = Mass of sand / Density of sand
- Volume (sand) = 1331/3.5
- Volume (sand) = 380.29 cm³
If the volume of sand is <u>greater than 380.29 cm³</u>, the box will sink in water.
The heat capacity and the specific heat are related by C=cm or c=C/m. The mass m, specific heat c, change in temperature ΔT, and heat added (or subtracted) Q are related by the equation: Q=mcΔT. Values of specific heat are dependent on the properties and phase of a given substance.