Answer:
Nitrogen = 0.3 atm
Oxygen = 0.25 atm
Argon = 0.45 atm
Explanation:
According to Dalton's law of partial pressure, the total pressure in the container is equal to sum of the partial pressures of the individual gases.
Given;
Total pressure of the gases, P_total = 1 atm
Pressure of nitrogen, P_nitrogen = 0.3 atm
Pressure of oxygen, P_oxygen = 0.25 atm
Pressure of argon, P_argon = ?

Therefore, the contribution of each gas to the total pressure of the gas mixture is;
Nitrogen = 0.3 atm
Oxygen = 0.25 atm
Argon = 0.45 atm
Answer:
Is insufficient to overcome intermolecular forces.
Explanation:
Hope this helps
Please let me know if I'm wrong
Plasma, Gas, Water, Solid
Answer:
using higher concentration of the nucleophile
Explanation:
In SN2 reaction, the attack of the nucleophile on the substrate occurs simultaneously as the leaving group departs. The entering group normally attacks through the back side of the molecule. The reaction is concerted and bimolecular. This implies that the concentration of the nucleophile is important in the rate equation for the reaction. Hence increasing the concentration of the nucleophile will increase the rate of SN2 reaction.
A wave is a disturbance that carries energy from one place to another. Matter is NOT carried with the wave! A wave can move through matter (a medium). If it must have a medium, it is called a mechanical wave.