You need to first write a chemical equation and balance it
C₄H₁₀ + O₂ → CO₂ + H₂O
2 C₄H₁₀ + 13 O₂ → 8 CO₂ + 10 H₂O
1.0 moles X moles
1.0 mol C₄H₁₀ (

) = 4 moles of CO₂
M1v1=m2v2
m2=(m1v1)/v2
Where m is the molarities and v is the volumes
<span>m2=(25.0*0.500)/53.5
m2=12.5/53.5
m2=0.2336
by rounding off:
m2=0.234 M
so the answer is C: 0.234 M</span>
Answer is: concentration of hydrogen iodide is 6 M.
Balanced chemical reaction: H₂(g) + I₂(g) ⇄ 2HI(g).
[H₂] = 0.04 M; equilibrium concentration of hydrogen.
[I₂] = 0.009 M; equilibrium concentration of iodine.
Keq = 1·10⁵.
Keq = [HI]² / [H₂]·[I₂].
[HI]² = [H₂]·[I₂]·Keq.
[HI]² = 0.04 M · 0.009 M · 1·10⁵.
[HI]² = 36 M².
[HI] = √36 M².
[HI] = 6 M.
1- Molar solutions: based on number of moles of chemical in 1 litre of solution
2- Weight % solution: the weight of chemical divided by the total weight of the solution (chemical + water) and multiplied by 100.
Your answer would be C. Alpha decay involves the ejection of 2 protons and 2 neutrons from the nucleus for a total of 4 amu lost. This form of decay is most common in heavy elements.