Answer:
0.00016 kg
Explanation:
Given:
Power = P = 1.2 × 10⁹ Watts
Power = work done / Time
efficiency = 0.30
Input power = 1.2 × 10⁹ / 0.30 = 4 × 10⁹ W
Energy = 4 × 10⁹ x 60 x 60 = 1.44 x 10¹³ joules
E = m c² , where c is the speed of light and m is the mass.
⇒ mass = m = E / c² = (1.44 x 10¹³) / (3 × 10⁸ )²
= 0.00016 kg
Answer:
a) 0.1832 A
b) 11.91 Volts
c) 2.18 Watt , 0.0168 Watt
Explanation:
(a)
R = external resistor connected to the terminals of the battery = 65 Ω
E = Emf of the battery = 12.0 Volts
r = internal resistance of the battery = 0.5 Ω
i = current flowing in the circuit
Using ohm's law
E = i (R + r)
12 = i (65 + 0.5)
i = 0.1832 A
(b)
Terminal voltage is given as
= i R
= (0.1832) (65)
= 11.91 Volts
(c)
Power dissipated in the resister R is given as
= i²R
= (0.1832)²(65)
= 2.18 Watt
Power dissipated in the internal resistance is given as
= i²r
= (0.1832)²(0.5)
= 0.0168 Watt
Explanation:
It is given that,
Mass of person, m = 70 kg
Radius of merry go round, r = 2.9 m
The moment of inertia, 
Initial angular velocity of the platform, 
Part A,
Let
is the angular velocity when the person reaches the edge. We need to find it. It can be calculated using the conservation of angular momentum as :

Here, 


Solving the above equation, we get the value as :

Part B,
The initial rotational kinetic energy is given by :



The final rotational kinetic energy is given by :



Hence, this is the required solution.
C. Lack of mates. If they cannot reproduce enough, their size will reduce.
Answer:
Explanation:bjbhfcvvjkkknbnnnm