Answer:
799.54 ft
Explanation:
Linear thermal expansion is:
ΔL = α L₀ ΔT
where ΔL is the change in length,
α is the linear thermal expansion coefficient,
L₀ is the original length,
and ΔT is the change in temperature.
Given:
α = 1.2×10⁻⁵ / °C
L₀ = 800 ft
ΔT = -17°C − 31°C = -48°C
Find: ΔL
ΔL = (1.2×10⁻⁵ / °C) (800 ft) (-48°C)
ΔL = -0.4608
Rounded to two significant figures, the change in length is -0.46 ft.
Therefore, the final length is approximately 800 ft − 0.46 ft = 799.54 ft.
Using g = 9.8 m/s2, the statement that best describes the roller coaster car when it is at the top of the loop-de-loop is that The car has both potential and kinetic energy, and it is moving at 24.6 m/s.
The correct answer is <span>B) The car has both potential and kinetic energy, and it is moving at 24.6 m/s.</span>
Answer:
The sun looks bigger than other stars because it is closer to the Earth, distance makes it look larger
26.2/3.4 would be the average velocity for the run.
7.7 miles/hr
Answer:3,600 Newtons
Explanation:
The net force acting on the car is
3×10^3squared
Newtons.
Force is defined as the product of the mass of the body and its aaceleration,⇒F=ma
Substituting the above given values we get,F=(1500kg) (2.0m /s^2 squared)=3000 N=3×10^3 squared N.
N=newtons