<span> ester of Ethanol and Ethanoic Acid is Ethyl Ethanoate. </span>
<span><span><span><span><span><span><span><span>C</span></span></span><span><span><span>2</span></span></span></span><span><span><span><span>H</span></span></span><span><span><span>5</span></span></span></span><span><span>O</span></span><span><span>H</span></span><span><span>(</span></span><span><span>l</span></span><span><span>)</span></span><span><span>+</span></span><span><span>C</span></span><span><span><span><span>H</span></span></span><span><span><span>3</span></span></span></span><span><span>C</span></span><span><span>O</span></span><span><span>O</span></span><span><span>H</span></span><span><span>(</span></span><span><span>l</span></span><span><span>)</span></span><span><span><span><span><span><span><span><span><span>c</span></span><span><span>o</span></span><span><span>n</span></span><span><span>c</span></span><span><span>.</span></span><span><span><span><span>H</span></span></span><span><span><span>2</span></span></span></span><span><span>S</span></span><span><span><span><span>O</span></span></span><span><span><span>4</span></span></span></span><span><span><span><span>/</span></span></span></span><span><span>w</span></span><span><span>a</span></span><span><span>r</span></span><span><span>m</span></span></span></span><span /></span></span></span><span><span><span><span>−</span><span>−−−−−−−−−−</span><span>→</span></span></span></span></span></span><span><span>C</span></span><span><span><span><span>H</span></span></span><span><span><span>3</span></span></span></span><span><span>C</span></span><span><span>O</span></span><span><span>O</span></span><span><span>C</span></span><span><span><span><span>H</span></span></span><span><span><span>2</span></span></span></span><span><span>C</span></span><span><span><span><span>H</span></span></span><span><span><span>3</span></span></span></span><span><span>(</span></span><span><span>a</span></span><span><span>q</span></span><span><span>)</span></span><span><span>+</span></span><span><span><span><span>H</span></span></span><span><span><span>2</span></span></span></span><span><span>O</span></span><span><span>(</span></span><span><span>l</span></span><span><span>)</span></span></span></span><span>C2H5OH(l)+CH3COOH(l)→conc.H2SO4/warmCH3COOCH2CH3(aq)+H2O(l)</span></span></span>
<span><span><span><span><span><span>Condition: Warm con. reactants with conc.</span></span></span></span><span>Condition: Warm con. reactants with conc.</span></span></span><span><span><span><span><span><span><span><span>H</span></span></span><span><span><span>2</span></span></span></span><span><span>S</span></span><span><span><span><span>O</span></span></span><span><span><span>4</span></span></span></span></span></span><span>H2SO4</span></span></span>
Nerves send signals to your brain from your spinal cord. If something is burning your nerves will send a pain signal from the area of the burn to your brain through you spinal cord. Then your brain sends a signal back to the nerves that there is pain and you should avoid it. Same with internal nerves and same with touch.
Fruits fall down due to inertia of rest when the branches of a tree are shaken. Fruits and branches are both at rest, but when branches of trees are shaken, branches starts moving where as fruits remain its state of rest and so separated from the branches and fall down.
Answer: The potential of the following electrochemical cell is 1.08 V.
Explanation:
=-0.74V[/tex]
=0.34V[/tex]
The element with negative reduction potential will lose electrons undergo oxidation and thus act as anode.The element with positive reduction potential will gain electrons undergo reduction and thus acts as cathode.
Here Cr undergoes oxidation by loss of electrons, thus act as anode. copper undergoes reduction by gain of electrons and thus act as cathode.


Where both
are standard reduction potentials, when concentration is 1M.
![E^0=E^0_{[Cu^{2+}/Ni]}- E^0_{[Cr^{3+}/Cr]}](https://tex.z-dn.net/?f=E%5E0%3DE%5E0_%7B%5BCu%5E%7B2%2B%7D%2FNi%5D%7D-%20E%5E0_%7B%5BCr%5E%7B3%2B%7D%2FCr%5D%7D)

Thus the potential of the following electrochemical cell is 1.08 V.
Answer:
6.1×10^4Pa or 61KPa
Explanation:
The Clausius-Clapeyron equation is used to estimate the vapour pressure at different temperature, once the enthalpy of vaporization and the vapor pressure at another temperature is given in the question. The detailed solution is shown in the image attached. The temperatures were converted to kelvin and the energy value was converted from kilojoule to joule since the value of the gas constant was given in unit of joule per mole per kelvin. The fact that lnx=2.303logx was also applied in the solution.