Answer:

Explanation:
The molar mass is the mass of a substance in grams per mole.
To find it, add the mass of each element in the compound. These masses can be found on the Periodic Table.
The compound given is:

The compound has 1 Ca (calcium) and 2 Cl (chlorine).
Mass of Calcium
- The molar mass of calcium is 40.08 g/mol
- There is only one atom of Calcium in CaCl₂, so the number above is what we will use.
Mass of Chlorine
- The molar mass of chlorine is 35.45 g/mol
- There are two atoms of chlorine in CaCl₂, therefore we need to multiply the molar mass by 2.
- 35.45 * 2= 70.9 g/mol
Molar Mass of CaCl₂
- Now, to find the molar mass, add the molar mass of 1 calcium and 2 chlorine.
- 40.08 g/mol + 70.9 g/mol =110.98 g/mol
The molar mass of CaCl₂ is <u>110.98 grams per mole. </u>
Answer:
1.2×10²³ atoms.
Explanation:
Data obtained from the question include:
Mole of propanone = 0.20 mole
Number of atoms of propanone =.?
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.022×10²³ atoms.
This implies that 1 mole of propanone also contains 6.022×10²³ atoms.
Thus, we can obtain the number of atoms in 0.20 mole of propanone as illustrated below:
1 mole of propanone contains 6.022×10²³ atoms.
Therefore, 0.20 mole of propanone will contain = 0.2 × 6.022×10²³ = 1.2×10²³ atoms.
Thus, 0.20 mole of propanone contain
1.2×10²³ atoms.
Answer:

Explanation:
Given:
For a school event, 1/6 of the athletic field is reserved for the fifth -grade classes and the reserved part of the field is divided equally among the 4 fifth grade classes in the school.
To find: fraction of the whole athletic field reserved for each fifth class
Solution:
Fraction of the whole athletic field reserved for four fifth classes = 
So, fraction of the whole athletic field reserved for each fifth class = 
Answer:
- <em>He realized that some elements had not been discovered.</em>
Explanation:
Some scientists that tried to arrange the list of elements known before Mendeleev include Antoine Lavoisier, Johann Döbereiner, Alexandre Béguyer de Chancourtois, John Newlands, and Julius Lothar Meyer.
<em>Dimitri Mendeleev</em> was so succesful that he is recognized as the most important in such work.
Mendeleev by writing the properties of the elements on cards elaborated by him, and "playing" trying to order them, realized that, some properties regularly (periodically) repeated.
The elements were sorted in increasing atomic weight (which is not the actual order in the periodic table), but when an element did not meet the pattern discovered, he moved it to a position were its properties fitted.
The amazing creativity of Mendeleev led him to leave blanks for what he thought were places that should be occupied by elements yet undiscovered. More amazing is that he was able to predict the properties of some of those elements.
When years after some of the elements were discovered, the genius of Mendeleev was proven because the "new" elements had the properties predicted by him.