The molar mass of the protein is 45095 g/mol.
The mass of a sample of a chemical compound divided by the quantity, or number of moles in the sample, measured in moles, is known as the molar mass of that compound.
The expression of molar mass of protein is
M₂ = (W₂/P) (RT/V)
Given;
W₂ = 1.31g
P = 4.32 torr = 5.75 X 10⁻³ bar
R = 0.083 Lbar/mol/K
T = 25°C = 298.15 K
V = 125 ml = 0.125 L
Putting all the values in the above formula
M₂= (1.31 g/5.75 X 10⁻³ bar) X (0.083 Lbar/mol/K X 2)/0.125 L)
M₂ = 45095 g/mol
Thus, the molar mass of the protein is 45095 g/mol.
Learn more about the Molar mass with the help of the given link:
brainly.com/question/22997914
#SPJ4
58 ce is the correct answer!
Complete Question
Magnesium sulfate forms a hydrate with the formula
. What is the maximum amount of water (in grams) that can be removed from 15 ml of toluene by the addition of 200 mg of anhydrous magnesium sulfate? The molar mass of
is 120.4 g/mol; H20 = 18 g/mol.
Answer:
The value is
of
Explanation:
From the question we are told that
The volume of toluene is 
The mass of anhydrous magnesium sulfate is 
The formula of the hydrate is 
The molar mass of
is 
From the formula given we see that
1 mole of
wil remove 7 moles of
to for the given formula
Hence
120.4 g (1 mole) will remove 7 moles (7 * 18 g = 126 g ) of
to for the given formula
Therefore 1 g of
x g of
So
![x = \frac{x]126 * 1}{ 120.4 }](https://tex.z-dn.net/?f=x%20%20%3D%20%20%5Cfrac%7Bx%5D126%20%2A%20%201%7D%7B%20120.4%20%7D)
=> 
From our calculation we obtained that
1 g of
will remove
of
Then
of
will remove z g of
of
So

=>
=>
of