Answer:
Hello There. ☆~\《--_^■^_--》\~☆ The final velocity of the car A is -1.053 m/s. For an elastic collision both the kinetic energy and the momentum of the system are conserved.
Hope It Helps!~ ♡
ItsNobody~ ☆
Answer:
4000 Hz
Explanation:
An anti-alias filter is usually added in front of the ADC to limit a certain range of input frequencies in order to avoid aliasing. This filter is usually a low pass filter that passes low frequencies but attenuates the high frequencies.
The Nyquist sampling criteria states that the sampling rate should be at least twice the maximum frequency component of the desired signal.
Sampling rate = 2(max input frequency)
From the relation we can find out the cut-off frequency for the anti-aliasing filter.
max input frequency = sampling rate/2
max input frequency = 8100/2 = 4050 Hz
Therefore, 4000 Hz would be an appropriate cut-off frequency for the anti-aliasing filter.
Answer:
49.6°
Explanation:
= Unpolarized light
= Light after passing though second filter = 
Polarized light passing through first filter

Polarized light passing through second filter

The angle between the two filters is 49.6°
Answer:
e. 2ωs / √5
Explanation:
The rotational kinetic energy of any rigid body, like an extension of the translational kinetic energy, is defined as follows:
Krot = 1/2 *I * ω²
For a solid sphere of mass M and radius R, the moment of inertia regarding any axis through its center, is as follows:
I =2/5 M*R²⇒ Krot(sp) = 1/2 (2/5 M*R²)*ωs² (1)
For a solid cylinder, rotating through an axis running through the central axis of the cylinder, the moment of inertia can be calculated as follows:
I = 1/2 M*R² ⇒ Krot(c) = 1/2 (1/2*M*R²)*ωc² (2)
As both rotational kinetic energies must be equal each other, we can equate (1) and (2), as follows:
1/2 (2/5 M*R²)*ωs² = 1/2 (1/2*M*R²)*ωc²
Simplifying common terms, and solving for ωc, we have:
ωc = 2*ωs /√5