On the whole, the metals burn in oxygen to form a simple metal oxide. Beryllium is reluctant to burn unless it is in the form of dust or powder. Beryllium has a very strong (but very thin) layer of beryllium oxide on its surface, and this prevents any new oxygen getting at the underlying beryllium to react with it.
When air is blown across the top of an open <span>water bottle, air molecules in the bottle vibrate at a particular frequency and sound is produced in a process called "refraction".
</span>
Answer:
7772.72N
Explanation:
When u draw your FBD, you realize you have 3 forces (ignore the force the car produces), gravity, normal force and static friction. You also realize that gravity and normal force are in our out of the page (drawn with a frame of reference above the car). So that leaves you with static friction in the centripetal direction.
Now which direction is the static friction, assume that it is pointing inward so
Fc=Fs=mv²/r=1900*15²/55=427500/55=7772.72N
Since the car is not skidding we do not have kinetic friction so there can only be static friction. One reason we do not use μFn is because that is the formula for maximum static friction, and the problem does not state there is maximum static friction.
The answer is b 12N because
We know that<span>
W = F × d × c o s(θ)</span>
assuming theta=0 we then solve and have<span>
F=<span>W/d</span></span>
substitute known values to get:<span><span>
F=<span><span>60J/</span><span>5m</span></span>=12N</span></span>
The approximate speed of sound in dry (0% humidity) air, in meters per second, at temperatures near 0 °C, can be calculated from

Here
Temperature in Celsius
Replacing with our values we have that



Therefore the speed of sound in air at that temperature is 366.1m/s