The automobiles do have the same acceleration as the velocity the answer is yes ?
Answer:
total time = 65 seconds
total distance = 1554 meters
Explanation:
kinematic equation:
final velocity = initial velocity + acceleration multiplied by time
v_1 = v_0 + at
28 m/s = 0 m/s + 2 m/s^2 (t)
t = 14 seconds
a) total time = 14 + 46 + 5 = 65 seconds
b) must solve for total distance and divide it by time.
d_1 = v_0t + 1/2 a * t^2
d_1 = 0 + 0.5(2) * 14^2
d_1 = 196 meters
d2 = vt
d2 = 28 *46
d2 = 1288 meters
v_1 = v_o + at
0 = 28 + a(5)
- 28/5 = a
a = - 5.6 m/s^2
d_3 = v_0t + 1/2 a * t^2
d_3 = 28 (5) - 0.5(5.6)*5^2
d_3 = 70 meters
total distance = d1 + d2 + d3 = 196 + 1288 + 70 = 1554 meters
I think its
Mass and volume
Answer:
Explanation:
Given
Mass of car A
Mass of car B
velocity of cart A=3 m/s
velocity of cart B=-7 m/s
Conserving momentum



Answer:
Explanation:
Let the separation required be d .
Force between rod = 10⁻⁷ x 2 I₁ I₂ L / d
where I₁ and I₂ are current in them , d is distance of separation and L is length of wire .
Force between rod = 10⁻⁷ x 2 x 1200 x 1200 x .69 / d
= .1987 /d
Restoring Force by spring = k x where k is force constant and x is compression .
= 130 x .03
= 3.9 N
For balancing
Restoring Force by spring = Force between rod
.1987 /d = 3.9
d = .1987 /3.9
= .0509 m
= 5.09 cm .