A. The proeutectoid phase is Fe₃c because 0.95 wt/c is greater than the eutectoid composition which is 0.76 wt/c
b. We determine how much total territe and cementite form, we apply the lever rule expressions yields.
Wx = (fe₃c-co/cfe₃ c-cx = 6.70- 0.95/6.70- 0.022 = 0.86
The total cementite
Wfe₃C = 10-Cx/ Cfe₃c -Cx = 0.95 - 0.022/6.70 - 0.022 = 0.14
The total cementite which is formed is
(0.14) × (3.5kg) = 0.49kg
c. We calculate the pearule and the procutectoid phase which cementite form the equation
Ci = 0.95 wt/c
Wp = 6.70 -ci/6.70 - 0.76 = 6.70 -0.95/6.70 - 0.76 = 0.97
0.97 corresponds to mass.
W fe₃ C¹ = Ci - 0.76/5.94 = 0.03
∴ It is equivalent to
(0.03) × (3.5) = 0.11kg of total of 3.5kg mass.
Subjective questions can be answered most likely through well-designed scientific investigations. Investigating peoples opinions or favorites does not involve any scientific investigations.
<h3>What are scientific investigation?</h3>
Scientific investigations include study on different natural phenomenon through well designed research methodologies. They include a preliminary hypothesis based on observations and various scientific records helps for reference.
Through well designed scientific experiments we can solve subjective questions and can be helpful in solving different environmental or social issues.
Peoples opinion or objective types questions are not targeted at scientific investigation, hence, option b is correct.
To find more on scientific investigations, refer here:
brainly.com/question/8386821
#SPJ1
Answer:
0.1835m/s
Explanation:
The formula for calculating the speed of wave is expressed as;
v = fλ
f is the frequency - The number of oscillations completed in one seconds
If 22 waves pass the boat every 60 seconds,
number of wave that passes in 1 seconds = 22/60 = 0.367 waves
Therefore the frequency f of the wave is 0.367Hertz
λ (wavelength) is the distance between successive crest and trough of a wave
λ = 0.5m
Substitute the given values into the formula
v = fλ
v = 0.367 * 0.5
v = 0.1835
Hence the speed of the waves is 0.1835m/s
Answer:
Three long wires are connected to a meter stick and hang down freely. Wire 1 hangs from the 50-cm mark at the center of the meter stick and carries 1.50 A of current upward. Wire 2 hangs from the 70-cm mark and carries 4.00 A of current downward. Wire 3 is to be attached to the meterstick and to carry a specific current, and we want to attach it at a location that results ineach wire experiencing no net force.
(a) Determine the position of wire 3.
b) Determine the magnitude and direction of current in wire 3
Explanation:
a) 

position of wire = 50 - 1.2
= 48.8cm
b) 

Direction ⇒ downward