(a)
Electronic configuration is given as follows:
![[Kr]4d^{3}](https://tex.z-dn.net/?f=%5BKr%5D4d%5E%7B3%7D)
Since, this is the electronic configuration of ion with+3 that means 3 electrons are removed. On adding the 3 electrons, the electronic configuration of neutral atom can be obtained.
Thus, electronic configuration of neutral atom is
.
The atomic number of Kr is 36, thus, total number of electrons become 36+6=42.
This corresponds to element: molybdenum. Thus, the tripositive atom will be
.
(b) The given electronic configuration is
.
The atomic number of Kr is 36, thus, total number of electrons become 36+4=40.
This corresponds to element zirconium, represented by symbol Zr.
We know that
g = LcosΘ
<span>where g, L and Θ are centripetal gravity length, and angle of object
</span><span>ω² = g/LcosΘ </span>
<span>ω = √(g / LcosΘ) </span>
Answer:
h=18.05 cm
Explanation:
Given that
m= 25 kg
K= 1300 N/m
x=26.4 cm
θ= 19.5 ∘
When the block just leave the spring then the speed of block = v m/s
From energy conservation



By putting the values


v=1.9 m/s
When block reach at the maximum height(h) position then the final speed of the block will be zero.
We know that

By putting the values

h=0.1805 m
h=18.05 cm
Answer:
We conclude that the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.
Explanation:
Given
To determine
Kinetic Energy (K.E) = ?
We know that a body can possess energy due to its movement — Kinetic Energy.
Kinetic Energy (K.E) can be determined using the formula

where
- K.E is the Kinetic Energy (J)
now substituting m = 1.75, and v = 54 in the formula



J
Therefore, the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.
Answer:
The solution becomes more acidic.
Explanation:
As the pH of a solution decreases, the concentration of hydrogen ions [H+] increases. Acidic solutions have a higher concentration of hydrogen ions and a lower pH.
I hope this helped. :)