Answer:
Velocity.
Explanation:
Projectile motion is characterized as the motion that an object undergoes when it is thrown into the air and it is only exposed to acceleration due to gravity.
As per the question, 'any change in the initial velocity of the projectile(object having gravity as the only force) would lead to a change in the range as well as the maximum height of the projectile.' To illustrate numerically:
Horizontal range: As per expression:
R= (
*sin2θ)/g
the range depending on the square of the initial velocity.
Maximum height: As per expression:
H= (
*
θ
)/2g
the maximum distance also depends upon square of the initial velocity.
Choice-C is a correct statement.
Answer:
3.626 m/s
Explanation:
v=d/t
1. -0.02/0 = 0 m/s
2. 0.86/0.2 = 4.3 m/s
3. 1.71/0.4 = 4.275 m/s
4. 2.54/0.6 = 4.23 m/s
5. 3.32/0.8 = 4.15 m/s
6. 4.08/1.0 = 4.08 m/s
7. 4.79/1.2 = 3.99 m/s
8. 5.48/1.4 = 3.91 m/s
9. 6.15/1.6 = 3.84 m/s
10. 6.76/1.8 = 3.76 m/s
11. 7.37/2.0 = 3.66 m/s
12. 7.92/2.2 = 3.6 m/s
13. 8.45/2.4 = 3.52 m/s
14. 8.96/2.6 = 3.45 m/s
the mean of these numbers is 3.626
his average velocity ks 3.626 m/s
<span>The diver is heading downwards at 12 m/s
Ignoring air resistance, the formula for the distance under constant acceleration is
d = VT - 0.5AT^2
where
V = initial velocity
T = time
A = acceleration (9.8 m/s^2 on Earth)
In this problem, the initial velocity is 2.5 m/s and the target distance will be -7.0 m (3.0 m - 10.0 m = -7.0 m)
So let's substitute the known values and solve for T
d = VT - 0.5AT^2
-7 = 2.5T - 0.5*9.8T^2
-7 = 2.5T - 4.9T^2
0 = 2.5T - 4.9T^2 + 7
We now have a quadratic equation with A=-4.9, B=2.5, C=7. Using the quadratic formula, find the roots, which are -0.96705 and 1.477251164.
Now the diver's velocity will be the initial velocity minus the acceleration due to gravity over the time. So
V = 2.5 m/s - 9.8 m/s^2 * 1.477251164 s
V = 2.5 m/s - 14.47706141 m/s
V = -11.97706141 m/s
So the diver is going down at a velocity of 11.98 m/s
Now the negative root of -0.967047083 is how much earlier the diver would have had to jump at the location of the diving board. And for grins, let's compute how fast he would have had to jump to end up at the same point.
V = 2.5 m/s - 9.8 m/s^2 * (-0.967047083 s)
V = 2.5 m/s - (-9.477061409 m/s)
V = 2.5 m/s + 9.477061409 m/s
V = 11.97706141 m/s
And you get the exact same velocity, except it's the opposite sign.
In any case, the result needs to be rounded to 2 significant figures which is -12 m/s</span>
Answer:
Kelly's weight would be 688.47 Newtons.
Explanation:
1 Kilogram would be 9.81 Newtons.