According to law of conservation of energy,
<span>Energy can neither be constructed nor be destroyed but can be transformed from one form to another.
</span>
<span>At the highest point of the pendulum(point b), pendulum is associated with potential energy only and no kinetic energy.
</span><span>Therefore total energy at point b = potential energy = 711 J.... i
</span>
<span>At the bottom most point(point a), pendulum is associated only with kinetic energy and no potential energy.
</span>Therefore total energy at point a = kinetic energy ---- ii
<span>From i and ii,
</span>Kinetic energy = potential energy = 711 J.(Conserving energy)
Hence kinetic energy at the bottom most point is 711 J.
Hope this helps!!
Answer:
#include <iostream>
#include <vector>
using namespace std;
int main() {
const int NUM_GUESSES = 3;
vector<int> userGuesses(NUM_GUESSES);
int i = 0;
int uGuess = 0;
for(i = 0; i <= userGuesses.size() - 1; i++){
cin >> uGuess;
userGuesses.at(i) = uGuess;
}
cout << endl;
return 0;
}
Explanation:
First inbuilt library were imported. Then inside the main( ) function, 3 was assigned to NUM_GUESSES meaning the user is to guess 3 numbers. Next, a vector was defined with a size of NUM_GUESSES.
Then a for-loop is use to receive user guess via cin and each guess is assigned to the vector.
AnMolar mass of CuCO3 = 123.5549 g/mol
This compound is also known as Copper(II) Carbonate.
Convert grams CuCO3 to moles or moles CuCO3 to grams
Molecular weight calculation:
63.546 + 12.0107 + 15.9994*3
Percent composition by element
Element Symbol Atomic Mass # of Atoms Mass Percent
Copper Cu 63.546 1 51.431%
Carbon C 12.0107 1 9.721%
Oxygen O 15.9994 3 38.848%
Explanation:
Answer:
y = 52.44 10⁻⁶ m
Explanation:
It is Rayleigh's principle that two points are resolved if the maximum of the diffraction pattern of one matches the minimum the diffraction pattern of the other
Based on this principle we must find the angle of the first minimum of the diffraction expression
a sin θ= m λ
The first minimum occurs for m = 1
sin θ = λ / a
Now let's use trigonometry the object is a distance L = 0.205 m
tan θ = y / L
Since the angles are very small, let's approximate
tan θ = sin θ/cos θ = sin θ
sin θ = y / L
We substitute in the diffraction equation
y / L = λ / a
y = λ L / a
Let's calculate
y = 550 10⁻⁹ 0.205 / 2.15 10⁻³
y = 52.44 10⁻⁶ m
Answer:
70 m.
Explanation:
Given,
Frequency, f = 20 HZ
speed of sound, v = 1400 m/s
wavelength of the waves = ?
we know,
v = f λ



Hence, the wavelength of the wave is equal to 70 m.