1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sedbober [7]
3 years ago
12

A 36.0 kg box initially at rest is pushed 5.00 m along a rough, horizontal floor with a constant applied horizontal force of 130

N. If the coefficient of friction between box and floor is 0.300, find the following.
(a) the work done by the applied force,
(b) the increase in internal energy in the box–floor system as a result of friction,
(c) the work done by the normal force,
(d) the work done by the gravitational force,
(e) the change in kinetic energy of the box, and
(f) the final speed of the box.
Physics
1 answer:
konstantin123 [22]3 years ago
5 0

Answer:

(a) W = 650J

(b) Wf = 529.2J

(c) W = 0J

(d) W = 0J

(e) ΔK = 120.8J

(f) v2 = 2.58 m/s

Explanation:

(a) In order to find the work done by the applied force you use the following formula:

W=Fd      (1)

F: applied force = 130N

d: distance = 5.0m

W=(130N)(5.0m)=650J

The work done by the applied force is 650J

(b) The increase in the internal energy of the box-floor system is given by the work done of the friction force, which is calculated as follow:

W_f=F_fd=\mu Mgd       (2)

μ: coefficient of friction = 0.300

M: mass of the box = 36.0kg

g: gravitational constant = 9.8 m/s^2

W_f=(0.300)(36.0kg)(9.8m/s^2)(5.0m)=529.2J

The increase in the internal energy is 529.2J

(c) The normal force does not make work on the box because the normal force is perpendicular to the motion of the box.

W = 0J

(d) The same for the work done by the normal force. The work done by the gravitational force is zero because the motion of the box is perpendicular o the direction of the gravitational force.

(e) The change in the kinetic energy is given by the net work on the box. You use the following formula:

\Delta K=W_T         (3)

You calculate the total work:

W_T=Fd-F_fd=(F-F_f)d     (4)

F: applied force = 130N

Ff: friction force

d: distance = 5.00m

The friction force is:

F_f=(0.300)(36.0kg)(9.8m/s^2)=105.84N

Next, you replace the values of all parameters in the equation (4):

W_T=(130N-105.84N)(5.00m)=120.80J

\Delta K=120.80J

The change in the kinetic energy of the box is 120.8J

(e) The final speed of the box is calculated by using the equation (3):

W_T=\frac{1}{2}M(v_2^2-v_1^2)       (5)

v2: final speed of the box

v1: initial speed of the box = 0 m/s

You solve the equation (5) for v2:

v_2 = \sqrt{\frac{2W_T}{M}}=\sqrt{\frac{2(120.8J)}{36.0kg}}=2.58\frac{m}{s}

The final speed of the box is 2.58m/s

You might be interested in
In an atomic clock there are approximately 9.193 × 109oscillations of the specified light emitted by cesium-133 atoms. The text
Aleks [24]

Explanation:

6000 years = 6000 x 365 x 24 x 60 x 60

= 1.892 x 10¹¹ second

 gain is 1 second

1 second is equivalent to 9.193 × 10⁹ oscillations .

In 1.892 x 10¹¹ second ,  change in oscillation is 9.193 × 10⁹ oscillation

in one second change in oscillation = (9.193 / 1.892 ) x 10⁹⁻¹¹

=  4.859 x 10⁻² oscillations .

5 0
3 years ago
Why doesn't electric current flow through rubber?
PolarNik [594]
Rubber is a insulator so current cannot pass through it where as metal is a conductor which allows current to pass through it
5 0
3 years ago
Read 2 more answers
The electric field 30cm from a van de Graaff generator is measured to be 28,300N/C. What is the charge of the van de Graaf?
gizmo_the_mogwai [7]

Answer:

14

Explanation:

EWAN KO LANG DIN BASTA YAN ALAM KO

8 0
3 years ago
PLEASE HELP ASAP
aleksandrvk [35]

Answer:

changing from a solid to a gas without changing into a liquid. :)

6 0
3 years ago
An aluminum wing on a passenger jet is 35 m long when its temperature is 17°C. At what temperature would the wing be 3 cm (0.03
Mnenie [13.5K]

Answer:

53.32°C

Explanation:

Length of the aluminium wing = 35 m

Change in length of aluminium wing = 0.03 m

The linear expansion coefficient of aluminium \alpha =23.6\times 10^{-6}/^{\circ}C

We know that change in length is given by \Delta L=L\alpha \Delta T

So 0.03=35\times 23.6\times 10^{-6}\Delta T

\Delta T=36.32^{\circ}C

So final temperature =T_I+\Delta T=17+36.32=53.3196^{\circ}C

5 0
3 years ago
Other questions:
  • A speaker fixed to a moving platform moves toward a wall, emitting a steady sound with a frequency of 205 Hz. A person on the pl
    5·1 answer
  • Orbiting satellites use geothermal energy panels. <br><br> True <br> False
    8·1 answer
  • After the first solid grains formed in our solar system, these particles could then grow by the process of ____, the collision a
    6·1 answer
  • Which change will cause the gravitational force between a baseball and a soccer ball to increase? Select three options.
    11·1 answer
  • Height of the image formed by a lens is-2cm.0what is the nature of the image?
    10·1 answer
  • Hi there! I'm not quite sure on how to solve this....
    10·2 answers
  • A car runs along a horizontal path at speed of 20m/s.The driver observes the rain hitting his car at 60 to vertical.If rain is a
    12·1 answer
  • 6. Compare Which of the
    6·1 answer
  • A 16 Ω resistor and a 6 Ω resistor are connected in series to an ideal 6 V battery.
    12·2 answers
  • How much force is required to accelerate a .6 kg object at 5 m/s^2
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!