Answer:
2.11 m
Explanation:
<u>Given data</u>
h=6.626×
(plank constant)
L=45.7 pm
n=n2-n1
n=5-1
n=4
<em>where,</em>
<em>n2=5</em>
<em>n1=1</em>
<u>To find:</u>
E=?
λ=? (Wavelength)
<u>solution</u>
The energy stored in an electron at a specified level is given by;
E=
×
÷8m
..........(1)
<em>m=mass of electron(9.1×</em>
)
<em>l=length of box</em>
<u>To find E</u>
putting the value of given data in eq(1)
E=9.41×
<u>To find λ</u>
λ=hc/E............................(2)
c=3×
(speed of light)
putting the value in eq 2 to find wavelength
λ=2.11 m
<u></u>
<u>Note:</u>
There is a chance in calculation error. but the method is correct to solve the problem.
Answer: type of force is friction
Explanation:
Distance is the actual path covered and displacement is the shortest distance from the object to the point of origin.
Please mark as brainliest if satisfied with answer
Answer:
Key terms
TermMeaningTransverse waveOscillations where particles are displaced perpendicular to the wave direction.Longitudinal waveOscillations where particles are displaced parallel to the wave direction
Answer: f = 927.55Hz
Explanation: Since the the tube is open-closed, the length of air and the wavelength of sound passing through the tube is given below
L = λ/4 where λ = wavelength.
speed of sound in air = v = 343m/s.
fundamental frequency of open closed tube = 315Hz
λ = 4L.
v = fλ
343 = 315 * 4L
343 = 1260 * L
L = 343/ 1260
L = 0.27m
In the same tube of length L = 0.27m but different medium ( helium), the speed of sound is 1010m/s.
The length of tube and wavelength are related by the formulae below
L = λ/4, λ=4L
λ = 4 * 0.27
λ = 1.087m.
v = fλ
1010 = f * 1.087
f = 1010/1.807
f = 927.55Hz