A force is a push or pull to an object
We know, the ideal gas equation,
P1V1 / T1 = P2V2 / T2
Here, P1 = 760 mm
V1 = 10 m3
T1 = 27 + 273 = 300 K
P2 = 400 mm Hg
T2 = -23 + 273 = 250 K
Substitute their values,
760*10 / 300 = 400 * V2 / 250
25.33 * 250 = 400 * V2
V2 = 6333.333/ 400
V2 = 15.83
In short, Your Answer would be approx. 15.83 m3
Hope this helps!
Answer:

Explanation:
When she moved a distance of 1 m from mid point she observe first destructive interference due to two speakers
so we can say that path difference of sound due to two speakers will be equal to half of the wavelength
so path difference is given as

so it will be


now we know that


now frequency of sound is given as



Answer:
change in momentum, 
Average Force, 
Explanation:
Given:
angle of kicking from the horizon, 
velocity of the ball after being kicked, 
mass of the ball, 
time of application of force, 
We know, since body is starting from the rest
.....................(1)


Now the components:


similarly


also, impulse
.........................(2)
where F is the force applied for t time.
Then from eq. (1) & (2)



Now, the components


&


Answer:
v = 120 m/s
Explanation:
We are given;
earth's radius; r = 6.37 × 10^(6) m
Angular speed; ω = 2π/(24 × 3600) = 7.27 × 10^(-5) rad/s
Now, we want to find the speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator.
The angle will be;
θ = ¾ × 90
θ = 67.5
¾ is multiplied by 90° because the angular distance from the pole is 90 degrees.
The speed of a point on the earth's surface located at 3/4 of the length of the arc between the equator and the pole, measured from equator will be:
v = r(cos θ) × ω
v = 6.37 × 10^(6) × cos 67.5 × 7.27 × 10^(-5)
v = 117.22 m/s
Approximation to 2 sig. figures gives;
v = 120 m/s