Answer:
Depends on what are you refering to
Explanation:
So depending on what you are looking for (your question is quite vauge)
there are 5 atoms of the comopound (K2CO3)
within that compound, there are 2 atoms of Potassium and 1 atom of Carbonate. Within Carbonate there are 4 atoms (1 carbon and 3 oxygens)
so answers may be
5, 15, or 25.
I hope this helps.
Moving from Ethanol through Propanol to Butanol the physical properties like boiling points, surface tension and viscosity increases because of the increases in intermolecular interactions between the molecules of given compounds.
Explanation:
Ethanol, propanol and butanol all have hydroxyl groups in common, means all have hydrogen bond intractions between their molecules. So, taking the hydrogen bonding interaction constant we are left with only the difference in the number of carbon atoms.
Butanol has the greatest physical properties than other two because it has four carbon atom chain. So, as we know the London Dispersion forces or Van der Waal forces increases with increase in molecular size and chain length of hydrocarbon.
Therefore, the strength of London forces is greater in butanol than other two while ethanol has the smallest chain comparatively hence, lowest physical properties.
Make an observation.
Conduct research.
Form hypothesis.
Test hypothesis.
Record data.
Draw conclusion.
Replicate.
One thing that is designed to change in the set up of the experiment. ( The things that I can change) Independent Variable.
Answer:
1. hydrogen - H
2. helium - He
3. sodium - Na
4. magnesium - Mg
5. potassium - K
Explanation:
Hydrogen is the element of group 1 and first period. The atomic number of hydrogen is 1 and the symbol of the element is H.
The electronic configuration of the element hydrogen is:-

Helium is the element of group 18 and first period. The atomic number of helium is 2 and the symbol of the element is He.
The electronic configuration of the element helium is:-

Sodium is the element of group 1 and third period. The atomic number of sodium is 11 and the symbol of the element is Na.
The electronic configuration of the element sodium is:-

Magnesium is the element of group 2 and third period. The atomic number of magnesium is 12 and the symbol of the element is Mg.
The electronic configuration of the element magnesium is:-

Potassium is the element of group 1 and forth period. The atomic number of potassium is 19 and the symbol of the element is K.
The electronic configuration of the element potassium is:-

Answer:
Pottasium reacts with water vigorously and the reation is exothermic. The heat released causes the hydrogen released to ignite
Explanation: