Answer: molecular formula = C12H16O8
Explanation:
NB Mm CO2= 44g/mol
Mm H2O= 18g/mol
Moles of CO2 = 36.86/44=0.84mol
0.84mole of CO2 has 0.84 mol of C
Moles of H2O = 10.06/18= 0.56mol
1mol of H20 contains 1mol of O and 2 mol H,
Hence there are 0.56mol O and (0.56×2)mol H
Hence the compound contains
C= 0.84 mol H= 1.12mol O=0.56mol
Divide through by smallest number
C= 0.83/0.56= 1.5mol
H= 1.12/0.55= 2mol
O= 0.56/0.56= 1mol
Multiply all by 2 to have whole number of moles = 3:4:2
Hence empirical formula= C3H4O2
(C3H4O2)n = 288.38
[(12×3) + 4+(16×2)]n= 288.38
72n=288.38
n= 4
:. Molecular formula=(C3H4O2)4= C12H16O8
I have no idea!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
The half life of a radioactive element is the time needed to the element to decay and reach the half amount of the initial amount. Here we have a radioisotope element which decays its half from 10,000 to 5,000 in two days. Therefore, its half life is 2 days.
Answer:
This question is incomplete
Explanation:
This question is incomplete because the result of the described experiment would have better determined the type of scientific explanation to profer. However, the type of material that will preserve the relative hotness or temperature of the hot coffee for the longest time will be a material than can resist heat transfer. These materials tend to keep hot substances hot by not allowing the heat of the coffee to be conducted or pass through it. These materials are mostly insulators or made by placing an insulator between two heat conductors.
Generally, heat is usually transferred from a region of higher concentration to a region of lower concentration, hence when the heat is denied of this transfer, the heat will remain trapped in the "heat-donor" substance (in this case the hot coffee). Thus, the material chosen (A, B or C) will be the material that resists heat transfer the most based on the explanation above.