<u>Answer:</u> The mass of nitrogen gas reacted to produce given amount of energy is 5.99 grams.
<u>Explanation:</u>
The given chemical reaction follows:

We know that:
Molar mass of nitrogen gas = 28 g/mol
We are given:
Enthalpy change of the reaction = 14.2 kJ
To calculate the mass of nitrogen gas reacted, we use unitary method:
When enthalpy change of the reaction is 66.4 kJ, the mass of nitrogen gas reacted is 28 grams.
So, when enthalpy change of the reaction is 14.2 kJ, the mass of nitrogen gas reacted will be = 
Hence, the mass of nitrogen gas reacted to produce given amount of energy is 5.99 grams.
Answer: The volume of gas is 3020 ml
Explanation:
According to ideal gas equation:
P = pressure of gas = 821.4 torr = 1.08 atm (760 torr = 1atm)
V = Volume of gas in L = ?
n = number of moles =
R = gas constant =
T =temperature =
Thus volume of gas is 3020 ml
6.52 × 10⁴ L. (3 sig. fig.)
<h3>Explanation</h3>
Helium is a noble gas. The interaction between two helium molecules is rather weak, which makes the gas rather "ideal."
Consider the ideal gas law:
,
where
is the pressure of the gas,
is the volume of the gas,
is the number of gas particles in the gas,
is the ideal gas constant, and
is the absolute temperature of the gas in degrees Kelvins.
The question is asking for the final volume
of the gas. Rearrange the ideal gas equation for volume:
.
Both the temperature of the gas,
, and the pressure on the gas changed in this process. To find the new volume of the gas, change one variable at a time.
Start with the absolute temperature of the gas:
,
.
The volume of the gas is proportional to its temperature if both
and
stay constant.
won't change unless the balloon leaks, and- consider
to be constant, for calculations that include
.
.
Now, keep the temperature at
and change the pressure on the gas:
,
.
The volume of the gas is proportional to the reciprocal of its absolute temperature
if both
and
stays constant. In other words,
(3 sig. fig. as in the question.).
See if you get the same result if you hold
constant, change
, and then move on to change
.
To determine a planet's mass, astronomers typically measure the minuscule movement of the star caused by the gravitational tug of an orbiting planet. For planets the massof Earth detecting such a tiny tug is extraordinarily challenging with current technology
Answer:
2.5 g/cm3 .
Explanation:
Density is mass in grams over volume in cubic centimeters. So it is 25 g 10 cm 3 =2.5 g/cm 3 The unit is grams per cubic centimeter. NB - density can also be kilograms over cubic meters Hope this helps!