Atomic size decreases in a period but the ionization energy and electronegativity increases across a period.
<h3>
Describe the trends in the atomic size, ionization energy and electronegativity?</h3>
Atomic radius decreases across a period because of nuclear charge increases whereas atomic radius of atoms generally increases from top to bottom within a group because there is again an increase in the positive nuclear charge.
Ionization energy increases when we move from left to right across an period and decreases from top to bottom.
Electronegativity also increases from left to right across a period and decreases from top to bottom.
So we can conclude that atomic size decreases in a period but the ionization energy and electronegativity increases across a period.
Learn more about Electronegativity here: brainly.com/question/24977425
#SPJ1
Answer:
HI(aq) + H₂O(ℓ) ⟶ H₃O⁺(aq) + I⁻(aq)
Explanation:
The HI donates a proton to the water, converting it to a hydronium ion
HI(aq) + H₂O(ℓ) ⟶ H₃O⁺(aq) + I⁻(aq)
Thus, the HI is behaving like a Brønsted acid.
Answer:
sodium sulfate
Explanation:
For naming an ionic compound with polyatomic anion, the metal is written first using its element name followed by name of the polyatomic anion. Therefore, the compound with Na+Na+ cation and SO2−4SO42− anion is named as sodium sulfate.
In hot water the molecules move faster versus In cold water they move slower (hope that helps)
The balanced chemical reaction:
<span>Cu + 2AgNO3 = Cu(NO3)2 + 2Ag
</span>
We are given the amount of the reactants to be used for the reaction. These values will be the starting point of our calculations.
9.85 g Cu ( 1 mol Cu / 63.55 g Cu ) = 0.15 mol Cu
31.0 g AgNO3 ( 1 mol AgNO3 / 169.87 g AgNO3 ) = 0.18 mol AgNO3
The limiting reactant is AgNO3.
0.18 mol AgNO3 ( 1 mol Cu(NO3)2 / 2 mol AgNO3 ) (187.56 g / 1 mol) =16.88 g Cu(NO3)2
0.15 mol Cu - 0.18 mol AgNO3 ( 1 mol Cu / 2 mol AgNo3) = 0.06 mol Cu excess
<span>0.06 mol Cu ( 63.55 g Cu / 1 mol Cu ) = 3.81 g Cu excess</span>