The dissociation equation will be
NH4OH ---> NH4+ + OH-
Initial 0.006 0 0
Change -0.006 X 0.053 +0.006 X 0.053 -0.006 X 0.053
Equlibrium 0.006 -0.006 X 0.053 0.006 X 0.053 0.006 X 0.053
Ka = [NH4+] [ OH-] / [NH4OH] = (0.006 X 0.053)^2 / 0.006 -0.006 X 0.053
Ka = 1.78 X 10^-5
Remember the formula as per the second Law of Newton: F = m*a
And also remember that the weight is the force with which the mass is attracted by the planet (or satellite in the case of the moon).
With that information you can answer the questions:
a) Weight = F = m*a
m = 175 slugs = 175 lbm
i) Earth
a = 32.17 ft/s^2
Weight on Earth = 175 lbm * 32.17 ft / s^2 = 5,629.75 poundal
ii) Moon
a = [1/6] 32.17 ft/s^2
Weight on the Moon = [1/6]*5,629.75 poundal = 938.29 poundal
b) Force = 355 poundal
m = 25.0 slug
a in m/s^2 = ?
First calculate the force in ft/s^2
F = m*a => a = F/m = 355 poundal / 25.0 slug = 14.2 ft/s^2
Conversion:
14.2 ft / s^2 * [ 0.3048 m/ft] = 4.32816 m/s^2
Answer: 4.33 m/s^2
Answer:
Explanation:
Assume we have 100g of this substance. That means we would have 20.24g of Cl and 79.76g of Al. Now we can find how many moles of each we have:
= 2.25 mol of chlorine
= 0.750 mol of Al.
To form a integer ratio, do 2.25/0.75 = 2.99999 ~= 3.
So the ratio is essentially Al : Cl => 1 : 3. To the compound is possibly
.
However, it says it has a molar mass of 266.64 g/mol, and since AlCl3 has a molar mass of 133.32, it must be
.
Actually this molecule isn't exactly AlCl3 (which is ionic). Al2Cl6 forms a banana bond where Cl acts as a hapto-2 ligand. But that's a bit advanced. All you need to know is X = Al2Cl6
The answer to this is t<span>he atom is mostly empty space.</span>