Answer:
Making oxygen
Oxygen can be made from hydrogen peroxide, which decomposes slowly to form water and oxygen:
hydrogen peroxide → water + oxygen
2H2O2(aq) → 2H2O(l) + O2(g)
The rate of reaction can be increased using a catalyst, manganese(IV) oxide. When manganese(IV) oxide is added to hydrogen peroxide, bubbles of oxygen are given off.
Apparatus arranged to measure the volume of gas in a reaction. Reaction mixture is in a flask and gas travels out through a pipe in the top and down into a trough of water. It then bubbles up through a beehive shelf into an upturned glass jar filled with water. The gas collects at the top of the jar, forcing water out into the trough below.
To make oxygen in the laboratory, hydrogen peroxide is poured into a conical flask containing some manganese(IV) oxide. The gas produced is collected in an upside-down gas jar filled with water. As the oxygen collects in the top of the gas jar, it pushes the water out.
Instead of the gas jar and water bath, a gas syringe could be used to collect the oxygen.
First solve the moles of oxgen present in the compound
mol O = 6.93 g O ( 1 mol O / 16 g O )
mol O = 0.43 mol H
then solve the moles of hydrogen present
mol H = ( 7.36 - 6.93) g H ( 1 mol H / 1 g H)
mol H = 0.43 mol H
so the O and H are in the same mole content so the molecular formula would be OH, but the molar mass will not satisfy. so the answer would be
H2O2
A, O2 has to be a reactant for combustion to burn
The factor that is generally responsible for higher melting point is intermolecular forces. The compounds that are covalent in nature are made of molecules rather than ions. It has been seen that some of the covalent compounds have polar molecules at one end, due to which the one end has more electronegative force than the other. The electrostatic force that is bounding the compound is the main cause of higher melting point of this compound. So it is true that with the increase of polarity of a compound creates higher melting point. .. hope I helped