Answer:
ΔH° = -186.2 kJ
Explanation:
Hello,
This case in which the Hess method is applied to compute the required chemical reaction. Thus, we should arrange the given first two reactions as:
(1) it is changed as:
SnCl2(s) --> Sn(s) + Cl2(g)...... ΔH° = 325.1 kJ
That is why the enthalpy of reaction sign is inverted.
(2) remains the same:
Sn(s) + 2Cl2(g) --> SnCl4(l)......ΔH° = -511.3 kJ
Therefore, by adding them, we obtain the requested chemical reaction:
(3) SnCl2(s) + Cl2(g) --> SnCl4(l)
For which the enthalpy change is:
ΔH° = 325.1 kJ - 511.3 kJ
ΔH° = -186.2 kJ
Best regards.
Answer:
The top layer is the Aqueous layer, and the benzoic acid is contained in the non-aqueous layer/oil phase.
Explanation:
A separating funnel is a very important piece of laboratory glassware that is used to separate the components of liquid-liquid mixtures which are immiscible. This technique is used in the extraction of the components of mixtures.
The liquids separate into two phases. The separation is based on the differences in the liquids' densities, where the denser liquid settles below and the lower density liquid stays afloat. Liquids used for this kind of separation are usually different liquids, one is the aqueous layer and the other, a non-aqueous layer.
Partition coefficient or distribution coefficient is defined as the ratio of the concentrations of a compound in two immiscible solvents at equilibrium.
Organic solvents (except halogenated organic compounds) with densities greater than that of water i.e 1g/mL ( usually called the oil phase) settle at the bottom of the aqueous phase.
Benzoic acid. will settle at the bottom layer ( i.e the lower phase).
Answer:
Elements that are in the same period have chemical properties that are not all that similar. Consider the first two members of period 3: sodium (Na) and magnesium (Mg). In reactions, they both tend to lose electrons (after all, they are metals), but sodium loses one electron, while magnesium loses two.
Explanation:
(Hoped this helped! :D)