Answer:
4 s
Explanation:
Given:
Δx = 12 m
v₀ = 6 m/s
v = 0 m/s
Find: t
Δx = ½ (v + v₀) t
12 m = ½ (0 m/s + 6 m/s) t
t = 4 s
Density offers a convenient means of obtaining the mass of a body from its volume or vice versa; the mass is equal to the volume multiplied by the density (M = Vd), while the volume is equal to the mass divided by the density (V = M/d).
M = V d
M = 1.4 * 2 = 2.8 kg
Answer:
h = 50.49 m
Explanation:
Data provided:
Speed of skier, u = 2.0 m/s
Maximum safe speed of the skier, v = 30.0 m/s
Mass of the skier, m = 85.0
Total work = 4000 J
Height from the starting gate = h
Now, from the law of conservation of energy
Total energy at the gate = total energy at the time maximum speed is reached

where, g is the acceleration due to the gravity
on substituting the values, we get

or
170 + 833.85 × h = 4000 + 38250
or
h = 50.49 m
You may have a cold if you do not feel well, depends on the symptoms
Answer:

Explanation:
<u>LC Circuit</u>
It's a special circuit made of three basic elements: The AC source, a capacitor, and an inductor. The charge, current, and voltage are oscillating when there is an interaction between the electric and magnetic fields of the elements. The following variables will be used for the formulas:
= charge of the capacitor in any time 
= initial charge of the capacitor
=angular frequency of the circuit
= current through the circuit in any time 
The charge in an LC circuit is given by

The current is the derivative of the charge

We are given

It means that
![q(t_1) = q_0 \, cos (\omega t_1 )=q_1\ .......[eq 1]](https://tex.z-dn.net/?f=q%28t_1%29%20%3D%20q_0%20%5C%2C%20cos%20%28%5Comega%20t_1%20%29%3Dq_1%5C%20.......%5Beq%201%5D)
![i(t_1) = - \omega q_0 \, sin(\omega t_1)=i_1.........[eq 2]](https://tex.z-dn.net/?f=i%28t_1%29%20%3D%20-%20%5Comega%20q_0%20%5C%2C%20sin%28%5Comega%20t_1%29%3Di_1.........%5Beq%202%5D)
From eq 1:

From eq 2:

Squaring and adding the last two equations, and knowing that


Operating

Solving for 

Now we know the value of
, we repeat the procedure of eq 1 and eq 2, but now at the second time
, and solve for 

Solving for 

Now we replace the given values. We'll assume that the placeholder is a pi for the frequency, i.e.




Finally

