The answer is C. <span>Light travels at different speeds in water and in glass.</span>
A steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.the speed of transverse waves on the wire would be 372.77 m/s
<h3>What is a sound wave?</h3>
It is a particular variety of mechanical waves made up of the disruption brought on by the movements of the energy. In an elastic medium like the air, a sound wave travels through compression and rarefaction.
For calculating the wave velocity of the sound waves generated from the piano can be calculated by the formula
V= √F/μ
where v is the wave velocity of the wave travel on the string
F is the tension in the string of piano
μ is the mass per unit length of the string
As given in question a steel piano wire, of length 1.150 m and mass of 4.80 g is stretched under a tension of 580.0 N.
The μ is the mass per unit length of the string would be
μ = 4.80/(1.150×1000)
μ = 0.0041739 kg/m
By substituting the respective values of the tension on the string and the density(mass per unit length) in the above formula of the wave velocity
V= √F/μ
V=√(580/0.0041739)
V = 372.77 m/s
Thus, the speed of transverse waves on the wire comes out to be 372.77 m/s
Learn more about sound waves from here
brainly.com/question/11797560
#SPJ1
Answer:
The disadvantage is that convex mirror is that they make it appear like those objects are at a more noteworthy distance than they actually are. It always gives a virtual, erect and a diminished image.
Explanation:
now you can yourself know to which part of electromagnetic spectrum the photon belongs....
not fitting sharply in green
Answer:
a) 0.25m
b) 5 m/s
Explanation:
When the spring is compressed both boxes are moving with the same velocity, so applying the principle of linear momentum conservation:

Now applying the principle of energy conservation:

We got that the maximum compression is 0.25m.