FeBr₃ ⇒ limiting reactant
mol NaBr = 1.428
<h3>Further explanation</h3>
Reaction
2FeBr₃ + 3Na₂S → Fe₂S₃ + 6NaBr
Limiting reactant⇒ smaller ratio (mol divide by coefficient reaction)
211 g of Iron (III) bromide(MW=295,56 g/mol), so mol FeBr₃ :

186 g of Sodium sulfide(MW=78,0452 g/mol), so mol Na₂S :

Coefficient ratio from the equation FeBr₃ : Na₂S = 2 : 3, so mol ratio :

So FeBr₃ as a limiting reactant(smaller ratio)
mol NaBr based on limiting reactant (FeBr₃) :

It suggests that life changes over time by showing different animals at different stages in their life, also giving more than one example on how they can change during early development and throughout their lives
Answer:
Polarity in chemistry referred to physical properties of compounds related to solubility, melting and boiling properties.
Polarity of black pepper can be seen when black pepper is sprinkled on water. The balck pepper float on water and get displaced if touched.
It means black pepper is non-polar and have no difference in electronegativity between bonded atoms. Black pepper is so light in weight and non-polar, the surface tension of water keep it floating in the water.
Answer:
The answer to your question is the letter A. 1
Explanation:
Unbalanced chemical reaction
Mg + O₂ ⇒ MgO
Reactants Elements Products
1 Magnesium 1
2 Oxygen 1
Balanced chemical reaction
2Mg + O₂ ⇒ 2MgO
Reactants Elements Products
2 Magnesium 2
2 Oxygen 2
Conclusion
The coefficients of the balanced equation are 2, 1, 2
Answer:
C. Its oxidation number increases.
Explanation:
- <em><u>Oxidation is defined as the loss of electrons by an atom while reduction is the gain of electrons by an atom</u></em>.
- Atoms of elements have an oxidation number of Zero in their elemental state.
- When an atom looses electrons it undergoes oxidation and its oxidation number increases.
- For example, <em><u>an atom of sodium (Na) at its elemental state has an oxidation number of 0. When the sodium atom looses an electrons it becomes a cation, Na+, with an oxidation number of +1 , the loss of electron shows an increase in oxidation number from 0 to +1.</u></em>