Answer:
SQUARE
Step-by-step explanation:
If Quadrilateral MNPQ has vertices M(4,0), N(0,6), P(-4,0) and Q(0, -6).
Find the following MN, NP, PQ and MQ
Using the formula for calculating the distance between two points
MN = √(6-0)²+(0-4)²
MN = √6²+4²
MN = √36+16
MN = √52
MN = 2√13
NP = √(0-6)²+(-4-0)²
NP = √6²+4²
NP = √36+16
NP = √52
NP = 2√13
PQ = √(-6-0)²+(0-(-4))²
PQ = √6²+4²
PQ = √36+16
PQ = √52
PQ = 2√13
MQ = √(-6-0)²+(0-4)²
MQ = √6²+4²
MQ = √36+16
MQ= √52
MQ = 2√13
Since the length of all the sides are equal, hence the shape is a SQUARE
Find the roots
solve
we use hmm, completing the suare
2(x²-1.5x)=4
divide both sides by 2
x²-1.5x=2
take 1/2 of linear coeiftn and square it
-1.5/2=-0.75, (-0.75)²=0.5625
add that to both sides
x²-1.5x+0.5625=2+0.5625
factor perfect squaer trinomial
(x-0.75)²=2.5625
square root both sides, remember to take positive and negative square roots
x-0.75=+/-√2.5625
add 0.75 to both sides
x=0.75+/-√2.5625
the roots are x=0.75+√2.5625 and x=0.75-√2.5625
1/a and 1/b
1/(0.75+√2.5625) and 1/(0.75-√2.5625)
if the roots of a quadratic equation are r1 and r2 then it factors to
(x-r1)(x-r2)
so then we can factor our equation to be

if we were to try and expand it, we would get
x²+0.75x-0.5
that's the simpliest equation with roots 1/a and 1/b where a and b are he roots of 2x²-3x=4
x²+0.75x-0.5 is answer
Answer:
should be none of the about because each time you multiple by 1/2, i got 1/64 for the 10th
Step-by-step explanation:
Answer:
Infinite
Step-by-step explanation:
I hope this helps, if it doesn't then just message me and ill be more than happy to help :)