Na(s) forms an ionic bond.
<h3>What is ionic bond?</h3>
The main interaction in ionic compounds is ionic bonding, a type of chemical bonding that involves the electrostatic attraction between two atoms or ions with dramatically differing electronegativities. Along with metallic and covalent bonds, it is one of the most common types of bonds. Atoms (or collections of atoms) possessing an electrical charge are known as ions. Ions with negative charges are created when atoms gain electrons (called anions). Positively charged ions are produced when atoms lose electrons (called cations). In contrast to covalence, this electron transfer is referred to as electrovalence.
Ionic chemicals normally do not conduct electricity when solid, only when molten or in solution. Depending on the charge of the ions they are made of, ionic compounds typically have a high melting point.
To learn more about ionic bond from the given link:
brainly.com/question/13526463
#SPJ4
Answer: B
Explanation:
To find the amount of heat required, you would use q=mcΔT.

q=284.2 J
*Please ignore the capital A in the equation. I can't find a way to type in the degree sign into the equation without the A appearing.
Answer:
540.54 mmHg
Explanation:
We know that the partial pressure of a substance is defined as; Mole fraction * total pressure.
If the total amount of gases in the atmosphere is 100%, the mole fraction of nitrogen gas is now
78/100 = 0.78
Thus, partial pressure of nitrogen gas = 0.78 * 693 = 540.54 mmHg
Answer:
Explanation:
Whenever you see molar masses in gas law questions, more often than not density will be involved. This question is no different. To solve this, however, we will first need to play with the combined ideal gas equation PV=nRT to make it work for density and molar mass. The derivation is simple but for the sake of time and space, I will skip it. Hence, just take my word for it that you will end up with the equation:M=dRTPM = molar mass (g/mol)d = density (g/L)R = Ideal Gas Constant (≈0.0821atm⋅Lmol⋅K) T = Temperature (In Kelvin) P = Pressure (atm)As an aside, note that because calculations with this equation involve molar mass, this is the only variation of the ideal gas law in which the identity of the gas plays a role in your calculations. Just something to take note of. Back to the problem: Now, looking back at what we're given, we will need to make some unit conversions to ensure everything matches the dimensions required by the equation:T=35oC+273.15= 308.15 KV=300mL⋅1000mL1L= 0.300 LP=789mmHg⋅1atm760mmHg= 1.038 atmSo, we have almost everything we need to simply plug into the equation. The last thing we need is density. How do we find density? Notice we're given the mass of the sample (0.622 g). All we need to do is divide this by volume, and we have density:d=0.622g0.300L= 2.073 g/LNow, we can plug in everything. When you punch the numbers into your calculator, however, make sure you use the stored values you got from the actual conversions, and not the rounded ones. This will help you ensure accuracy.M=dRTP=(2.073)(0.0821)(308.15)1.038= 51 g/molRounded to 2 significant figuresNow if you were asked to identify which element this is based on your calculation, your best bet would probably be Vandium (molar mass 50.94 g/mol). Hope that helped :)