Answer:
a. pka = 3,73.
b. pkb = 10,27.
Explanation:
a. Supposing the chemical formula of X-281 is HX, the dissociation in water is:
HX + H₂O ⇄ H₃O⁺ + X⁻
Where ka is defined as:
![ka = \frac{[H_3O^+][X^-]}{[HX]}](https://tex.z-dn.net/?f=ka%20%3D%20%5Cfrac%7B%5BH_3O%5E%2B%5D%5BX%5E-%5D%7D%7B%5BHX%5D%7D)
In equilibrium, molar concentrations are:
[HX] = 0,089M - x
[H₃O⁺] = x
[X⁻] = x
pH is defined as -log[H₃O⁺]], thus, [H₃O⁺] is:
![[H_3O^+]} = 10^{-2,40}](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%7D%20%3D%2010%5E%7B-2%2C40%7D)
[H₃O⁺] = <em>0,004M</em>
Thus:
[X⁻] = 0,004M
And:
[HX] = 0,089M - 0,004M = <em>0,085M</em>
![ka = \frac{[0,004][0,004]}{[0,085]}](https://tex.z-dn.net/?f=ka%20%3D%20%5Cfrac%7B%5B0%2C004%5D%5B0%2C004%5D%7D%7B%5B0%2C085%5D%7D)
ka = 1,88x10⁻⁴
And <em>pka = 3,73</em>
b. As pka + pkb = 14,00
pkb = 14,00 - 3,73
<em>pkb = 10,27</em>
I hope it helps!
Answer:
This question begins with something, you should know: molar mass from water is aproximately 18 g/m, so if 18 grams of water are contained in 1 mole, the 40 grams occuped 2.22 moles. As you see, opcion a is the best!
Explanation:
Gravity is the force of attraction between two objects, and Earth's gravity pulls matter downward, toward its center. It pulls precipitation down from clouds and pulls water downhill. Gravity also moves air and ocean water. ... Gravity pulls denser air and water downward, forcing less dense air and water to move upward.
It'd be a physical change. This is because it's a change in the state of matter and not altering the chemical structure of water