Answer:
exercising
Step-by-step explanation:
Answer:
Step-by-step explanation:
Rewrite this quadratic equation in standard form: 2n^2 + 3n + 54 = 0. Identify the coefficients of the n terms: they are 2, 3, 54.
Find the discriminant b^2 - 4ac: It is 3^2 - 4(2)(54), or -423. The negative sign tells us that this quadratic has two unequal, complex roots, which are:
-(3) ± i√423 -3 ± i√423
n = ------------------- = ------------------
2(2) 4
Ur image is kinda cut off
"on the diagram aboe to what point does each point below correspond when t"
then nothing
<span />
80 - 2p
You use the distributive property
Answer:
a)
X | 1 3 5 7
f(X) | 0.4 0.2 0.2 0.2
b) 
Step-by-step explanation:
For this case we have defined the cumulative distribution function like this:





And we know that the general definition for the distribution function is given by:

Where f represent the density function.
Part a
For this case we need to find the density function, so we can find the values for the density for each value of X = 1,2,3,4,5,6,7,... since X is a discrete random variable.







And for any value higher than 7 we have that:
![x_i \in [8,9,10,...]](https://tex.z-dn.net/?f=%20x_i%20%5Cin%20%5B8%2C9%2C10%2C...%5D)

So then we have our density function defined like this:
X | 1 3 5 7
f(X) | 0.4 0.2 0.2 0.2
Part b
For this case we want to find this probability 
And since the random variable is discrete we can write this like that:
