Answer:
ΔT=-747,13°C
Explanation:
Sensible heat is<em> the amount of thermal energy that is required to change the temperature of an object</em>, the equation for calculating the heat change is given by:
Q=msΔT
where:
- Q, heat that has been absorbed or realeased by the substance [J]
- m, mass of the substance [g]
- s, specific heat capacity [J/g°C] (
- ΔT, changes in the substance temperature [°C]
To solve the problem, we clear ΔT of the equation and then replace our data:
Q=msΔT
ΔT=Q/ms
Δ
°C
<em>(Note that Q=-14900 J because there is a </em><u><em>LOST</em></u><em> of thermal energy)</em>
Thus, the change in temperature of the steel bar is -747,13°C, meaning that the temperature of the bar decreases.
Answer:
pH = 4
Solution is acidic
Explanation:
Given data;
Hydronium ion concentration = 1 × 10⁻⁴ M
pH of solution = ?
Solution:
pH = -log [H₃O⁺]
pH = -log [ 1 × 10⁻⁴ ]
pH = 4
According to pH scale the pH 7 is neutral while the pH less than 7 is acidic and greater than 7 is basic. The given solution has pH 4 it means solution is acidic.
Answer:
the valence electrons of atoms in a pure metal can be modeled as a sea of electrons
Answer:
the reactivity and the valence electrons
Explanation:
the reactivity of the elements would have played a significant role in why such elements were grouped together. the number of valence electrons dictates how reactive an element is - the less valence electrons the more reactive it is. the column, group 1 in which these elements are put together in, show that each of the elements have 1 valence electrons and are therefore reactive.
you can go on to further explain what valence electrons are, explain what the group numbers are associated with the valence electrons and how valence electrons effect reactivity. further this, talk about how the three elements have the same number of valence electrons and therefore were grouped together
Kinetic energy remains conserved in an elastic collision.