To solve this problem we will apply the concepts related to the Force of gravity given by Newton's second law (which defines the weight of an object) and at the same time we will apply the Hooke relation that talks about the strength of a body in a system with spring.
The extension of the spring due to the weight of the object on Earth is 0.3m, then


The extension of the spring due to the weight of the object on Moon is a value of
, then

Recall that gravity on the moon is a sixth of Earth's gravity.




We have that the displacement at the earth was
, then


Therefore the displacement of the mass on the spring on Moon is 0.05m
In the hydrologic cycle, water from the ocean evaporates into the atmosphere where it can condense then <span />
Answer:
The space cadet that weighs 800 N on Earth will weigh 1,600 N on the exoplanet
Explanation:
The given parameters are;
The mass of the exoplanet = 1/2×The mass of the Earth, M = 1/2 × M
The radius of the exoplanet = 50% of the radius of the Earth = 1/2 × The Earth's radius, R = 50/100 × R = 1/2 × R
The weight of the cadet on Earth = 800 N

Therefore, for the weight of the cadet on the exoplanet, W₁, we have;

The weight of a space cadet on the exoplanet, that weighs 800 N on Earth = 1,600 N.
Answer:
The north pole has the strongest magnetic force
Highest fluid potential energy: answer A
Because the fluid is pushed upwards and potential energy is function of height. Since point A is the highest, there is the highest potential energy.
highest fluid pressure: answer C
This is because it is at the bottom where you have a hydrostatic pressure component
increasing fluid speed: answer B
This is because the section of the pipe is smaller and in order to have the same fluid flow rate the speed must increase