According to the net force, the acceleration of the book is 16.47 m/s².
We need to know about force to solve this problem. According to second Newton's Law, the force applied to an object will be proportional to mass and acceleration. Hence, it can be written as
∑F = m . a
where F is force, m is mass and a is acceleration
From the question above, we know that
m = 3 kg
g = 9.8 m/s²
F1 = 20 N
Find the net force
∑F = F1 + W
∑F = 20 + m . g
∑F = 20 + 3 . 9.8
∑F = 20 + 29.4
∑F = 49.4 N
Find the acceleration
∑F = m . a
49.4 = 3 . a
a = 16.47 m/s²
Find more on force at: brainly.com/question/25239010
#SPJ4
Refer to the diagram shown below.
m = the mass of the object
x = the distance of the object from the equilibrium position at time t.
v = the velocity of the object at time t
a = the acceleration of the object at time t
A = the amplitude ( the maximum distance) of the mass from the equilibrium
position
The oscillatory motion of the object (without damping) is given by
x(t) = A sin(ωt)
where
ω = the circular frequency of the motion
T = the period of the motion so that ω = (2π)/T
The velocity and acceleration are respectively
v(t) = ωA cos(ωt)
a(t) = -ω²A sin(ωt)
In the equilibrium position,
x is zero;
v is maximum;
a is zero.
At the farthest distance (A) from the equilibrium position,
x is maximum;
v is zero;
a is zero.
In the graphs shown, it is assumed (for illustrative purposes) that
A = 1 and T = 1.
By using drift velocity of the electron, the current flow is 7.20 ampere.
We need to know about drift velocity of electrons to solve this problem. The drift velocity can be determined as
v = I / (n . A . q)
where v is drift velocity, I is current, n is atom number density, A is surface area and q is the charge.
From the question above, we know that
d = 2.097 mm
r = (0.002097 / 2) m
v = 1.54 mm/s = 0.00154 m/s
ρ = 8.92 x 10³ kg/m³
q = e = 1.6 x 10¯¹⁹C
Find the atom density
n = Na x ρ / Mr
where Na is Avogadro's number (6.022 x 10²³), Mr is the atomic weight of copper (63.5 g/mol = 0.635 kg/mol).
n = 6.022 x 10²³ x 8.92 x 10³ / 0.635
n = 8.46 x 10²⁷ /m³
Find the current flows
v = I / (n . A . q)
0.00154 = I / (8.46 x 10²⁷ . πr² . 1.6 x 10¯¹⁹)
0.00154 = I / (8.46 x 10²⁷ . π(0.002097 / 2)² . 1.6 x 10¯¹⁹)
I = 7.20 ampere
For more on drift velocity at: brainly.com/question/25700682
#SPJ4
<h2>Answer:</h2>
<u>A) Increase the voltage by adding a bigger battery </u>
<h2>Explanation:</h2>
According to Ohm's law
V = IR
where V is voltage, I is current and R is the resistance. If we write the equation for resistance we would get
R= V / I
Here we can see that Voltage is directly proportional to Resistance so in order to keep the balance if we increase the resistance then we must increase the voltage to keep the current constant.