Hot air rises<span> because when you </span>heat air<span> (or any other gas for that matter), it expands. When the </span>air<span> expands, it becomes less dense than the </span>air<span>around it. The less dense </span>hot air<span> then floats in the more dense cold </span>air<span> much like wood floats on water because wood is less dense than water.</span>
Answer:
The momentum would be doubled
Explanation:
The magnitude of the momentum of the freight train is given by:

where
m is the mass of the train
v is its speed
In this problem, we have that the speed of the train is unchanged, while the mass of the train is doubled:

therefore, the new momentum is

so, the momentum has also doubled.
Answer:
Technician A is right.
Explanation:
Given that,
Voltage of circuit, V = 12 volt
Current in the circuit, I = 3 A
Technician A says the electric power in this circuit is 36 watts. Technician B says the electric power in this circuit is 4 watts. We need to say that which technician is correct.
The power of any circuit is given by :


P = 36 watts
So, technician A is right. Hence, this is the required solution.
Answer:
Electric Current
Explanation:
The flow (or free movement) of these electrons through a wire.
Pretty sure :)
Answer:
a) U = 735 J
, b) U = 125.7 J
, c) U = 0 J
Explanation:
The gravitational power energy is
U = mg y - mg y₀
The last value is a constant, for simplicity we can make it zero, if the lowest point is at the origin of the coordinate system, which in this case we will place in the lowest part
a) Rope is horizontal
The height in this case is the same length of the rope
y = 2.10 m
w = mg = 350 N
U = 350 2.10
U = 735 J
b) when the angle is 34º
y = L - L cos 34
y = L (1- cos34)
y = 2.10 (1- cos 34)
y = 0.359 m
U = 350 0.359
U = 125.7 J
c) in this case this point coincides with the reference system
y = 0
U = 0 J