1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galina1969 [7]
3 years ago
12

8. A student does 1,000 J of work when she moves to her dormitory. Her internal energy is decreased by 3,000 J. Determine the he

at during this process. Does she gain or lose her heat
Physics
1 answer:
Lyrx [107]3 years ago
6 0

Answer:

The heat loss during the process = -4000 J

Explanation:

Work done by the student (W) = - 1000 J

Negative sign on the system is due to work done on the system.

Decrease in internal energy (U) = - 3000 J

We know that heat transfer in the system is given by (Q) = U + W

⇒ Q = - 1000 - 3000

⇒ Q = - 4000 J

This is the value of heat transfer during the process And negative sign indicates that heat loss during the process.

You might be interested in
A player kick the soccer ball from ground level and send it flying at an angle of 30° at a speed of 26M/S. What is the maximum h
icang [17]
The answer would be 2.63. Your welcome. This has been changed to the correct answer.
7 0
3 years ago
Ask Your Teacher A basketball player shoots toward a basket 5.8 m away and 3.0 m above the floor. If the ball is released 1.7 m
const2013 [10]

Answer:

The answer to your question is    vo = 5.43 m/s

Explanation:

Data

distance = d= 5.8 m

height = 3 m

height 2 = 1.7 m

angle = 60°

vo = ?

g = 9.81 m/s²

Formula

              hmax = vo²sinФ/ 2g

Solve for vo²

              vo² = 2ghmax / sinФ

Substitution

              vo² = 2(9.81)(3 - 1.7) / 0.866

Simplification

              vo² = 19.62(1.3) / 0.866

              vo² = 25.51 / 0.866

              vo² = 29.45

Result

              vo = 5.43 m/s

               

5 0
3 years ago
Help meee please fill in the blanks !!
Ratling [72]

The atomic number is the simply the number of protons in the atom. So in the first row with atomic number 2, the number of protons is 2.

If the atom has no charge, which I think you can assume for all of these, the number of electrons is equal to the number of protons. So the number of electrons is also 2.

The number of neutrons (which are the particles with no charge in the nucleus) is simply the mass number minus the atomic number i.e. 4 - 2 = 2.

The isotopic symbol is the symbol which is found on the periodic table of elements. There are 2 numbers associated which each element on the table. The larger is the mass number and the smaller is the atomic number. The atomic number or number of protons is what identifies the element. Looking at the periodic table ( https://sciencenotes.org/wp-content/uploads/2015/01/PeriodicTableOfTheElementsBW.pdf or https://simple.wikipedia.org/wiki/Periodic_table_(big) ), it can be seen that the element on the first row above with an atomic number of 2 is Helium with a symbol He. The number that is included with the name is simply the mass number which is 4 in this case, which tells us that this type of helium has 2 neutrons.

Another type (or isotope) of helium is Helium-3 which has one neutron.

Try the next row and post back if you have trouble with it

3 0
3 years ago
A,b, e are complete. Help on the others would be so appreciated!!
bixtya [17]

Answer:

serie Ceq=0.678 10⁻⁶ F  and the charge Q = 9.49 10⁻⁶ C

Explanation:

Let's calculate all capacity values

a) The equivalent capacitance of series capacitors

    1 / Ceq = 1 / C1 + 1 / C2 + 1 / C3 + 1 / C4 + 1 / C5

    1 / Ceq = 1 / 1.5 + 1 / 3.3 + 1 / 5.5 + 1 / 6.2 + 1 / 6.2

    1 / Ceq = 1 / 1.5 + 1 / 3.3 + 1 / 5.5 + 2 / 6.2

    1 / Ceq = 0.666 + 0.3030 +0.1818 +0.3225

    1 / Ceq = 1,147

    Ceq = 0.678 10⁻⁶ F

b) Let's calculate the total system load

   Dv = Q / Ceq

   Q = DV Ceq

   Q = 14 0.678 10⁻⁶

   Q = 9.49 10⁻⁶ C

In a series system the load is constant in all capacitors, therefore, the load in capacitor 5.5 is Q = 9.49 10⁻⁶ C

c) The potential difference

   ΔV = Q / C5

   ΔV = 9.49 10⁻⁶ / 5.5 10⁻⁶

   ΔV = 1,725 ​​V

d) The energy stores is

    U = ½ C V²

    U = ½ 0.678 10-6 14²

    U = 66.4 10⁻⁶ J

e) Parallel system

   Ceq = C1 + C2 + C3 + C4 + C5

   Ceq = (1.5 +3.3 +5.5 +6.2 +6.2) 10⁻⁶

   Ceq = 22.7 10⁻⁶ F

f) In the parallel system the voltage is maintained

   Q5 = C5 V

   Q5 = 5.5 10⁻⁶ 14

   Q5 = 77 10⁻⁶ C

g) The voltage is constant V5 = 14 V

h) Energy stores

   U = ½ C V²

   U = ½ 22.7 10-6 14²

   U = 2.2 10⁻³ J

8 0
3 years ago
a 2,000 pound car is driving at 60 miles/hour along a straight, level road. what is the net force acting on the car?
SVETLANKA909090 [29]

Answer:

0

Explanation:

According to Newton's second law, the net force is equal to the mass times the acceleration.  Since the car is not accelerating, the net force is 0.

5 0
3 years ago
Other questions:
  • A box is sitting stationary on a ramp that is 42° to the horizontal. The box has a gravitational force of 112.1 N. What is the m
    5·2 answers
  • A racecar driver has to hold on tightly when going around a banked curve. Approximately what is the centripetal force on a 2220.
    5·1 answer
  • A figure shows a vertically moving block on the end of a cord. The graph next to the figure gives the vertical velocity componen
    13·1 answer
  • The current limiting property of an inductor is called _____
    9·2 answers
  • A snail can move approximately 0.30 meters per minute. How many meters can the snail cover in
    14·2 answers
  • Type in the correct values to correctly represent the valence electron configuration of oxygen: AsB2pC A = B = C = What is the c
    13·2 answers
  • How much energy is transferred when the potential difference is 230 volts and the charge is 5 coulombs?
    13·1 answer
  • A plane took 3.55 hours to finish a journey. If the distance of
    13·1 answer
  • car was moving in a straight road of length 320 km it covered 240 km with an average velocity 75 km/hr then it ran out of fuel a
    8·1 answer
  • What's a good way to start the problem?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!