The sum of the kinetic and potential energies of a system of objects is conserved only when no external force acts on the objects.
<h3>
Conservation of mechanical energy</h3>
The principle of conservation of mechanical energy states that the total mechanical energy of an isolated system (absence of external force) is always constant.
M.A = P.E + K.E
where;
P.E is potential energy
K.E is kinetic energy
Thus, the sum of the kinetic and potential energies of a system of objects is conserved only when no external force acts on the objects.
Learn more about conservation of mechanical energy here: brainly.com/question/24443465
Answer:

Explanation:
The three resistors are connected in parallel: this means that the potential difference across each resistor is the same as the voltage of the battery. This can be calculated using the information about the
resistor: in fact, since we know its resistance and the current flowing through it (0.155 A), we can find the potential difference across this resistor, which is equal to the voltage of the battery:

We also know the total current in the circuit, 0.250 A. This means that we can find the total resistance of the circuit, using Ohm's law:

So now we now the total resistance and the resistance of two of the 3 resistors; therefore, we can find the resistance of the 3rd resistor:

Answer:
Target ceiling. the upper limit of your physical activity. Target fitness zone. Above the threshold of training and below the target ceiling.
Hope this helps. Can u give me brainliest
Explanation:
Answer: Sirius, the brightest star in the sky, is 2.6 parsecs (8.6 light-years) from Earth, giving it a parallax of 0.379 arcseconds. Another bright star, Regulus, has a parallax of 0.042 arcseconds. Then, the distance in parsecs will be,23.46.
Explanation: To find the answer, we have to know more about the relation between the distance in parsecs and the parallax.
<h3>What is the relation between the distance in parsecs and the parallax?</h3>
- Let's consider a star in the sky, is d parsec distance from the earth, and which has some parallax of P amount.
- Then, the equation connecting parallax and the distance in parsec can be written as,


<h3>How to solve the problem?</h3>

- Thus, we can find the distance in parsecs as,

Thus, we can conclude that, the distance in parsecs will be, 23.46.
Learn more about the relation connecting distance in parsecs and the parallax here: brainly.com/question/28044776
#SPJ4
Power plants release sulfur dioxide and nitrogen oxides into the atmosphere, where they combine with water vapor to form acid precipitation. The correct option among all the options that are given in the question is the first option or option "a". I hope the answer will help you and it is the one you were looking for.