Answer:
A. the speed of a reaction
Explanation:
The thermodynamic aspect of a reaction will show you the energy needed for a reaction to occur. If the energy difference(ΔG) is positive, which means the reaction is absorbing energy and it called endothermically. The opposite will be an exothermic reaction that will release energy, which means it doesn't need energy and the energy difference (ΔG) will be negative.
Thermodynamic can be used to determine a few things of a reaction, like the direction of the reaction, the extent, or temperature in which the reaction is spontaneous. But thermodynamic not used to find the speed of a reaction.
The answer would probably be B.
The acceleration of gravity on Earth is 9.8 m/s² downward.
This means that gravity adds 9.8 m/s downward to the speed
of a freely falling object every second.
So after 25 sec, it's falling (25 x 9.8m/s) = 245 m/s faster than
it was falling at the beginning of the 25 seconds.
If it dropped from rest (no speed), then its velocity
after 25 seconds is 245 m/s downward.
Answer:
Explanation:
The work done on the object at rest is all converted into kinetic energy, so we can write
Or, re-arranging for v,
where
v is the final speed of the object
W is the work done
m is the object's mass
If the work done on the object is doubled, we have W' = 2W. Substituting into the previous formula, we can find the new final speed of the object:
So, the new speed of the object is .