Answer:
200 N
Explanation:
Since Young's modulus for the metal, E = σ/ε where σ = stress = F/A where F = force on metal and A = cross-sectional area, and ε = strain = e/L where e = extension of metal = change in length and L = length of metal wire.
So, E = σ/ε = FL/eA
Now, since at break extension = e.
So making e subject of the formula, we have
e = FL/EA = FL/Eπr² where r = radius of metal wire
Now, when the radius and length are doubled, we have our extension as e' = F'L'/Eπr'² where F' = new force on metal wire, L' = new length = 2L and r' = new radius = 2r
So, e' = F'(2L)/Eπ(2r)²
e' = 2F'L/4Eπr²
e' = F'L/2Eπr²
Since at breakage, both extensions are the same, e = e'
So, FL/Eπr² = F'L/2Eπr²
F = F'/2
F' = 2F
Since F = 100 N,
F' = 2 × 100 N = 200 N
So, If the radius and length of the wire were both doubled then it would break when the tension reached 200 Newtons.
The equilibrium temperature of aluminium and water is 33.2°C
We know that specific heat of aluminium is 0.9 J/gm-K, and that of water is 1 J/gm-K
Now we can calculate the equilibrium temperature
(mc∆T)_aluminium=(mc∆T)_water
15.7*0.9*(53.2-T)=32.5*1*(T-24.5)
T=33.2°C
solution:
As Given plane is flying in east direction.
It throws back some supplies to designated target.
Time taken by the supply to reach the target =10 seconds
g = Acceleration due to gravity = - 9.8 m/s²[Taken negative as object is falling Downwards]
As we have to find distance from the ground to plane which is given by d.
d = 
=
meters
Distance from the ground where supplies has to be land to plane = Option B =490 meters