The gravitational force between two masses is given by:

where
G is the gravitational constant
m1 and m2 are the two masses
r is the separation between the two masses
We see that the force is proportional to the inverse of the square of the distance:

therefore, if the distance is tripled:
r'=3r
The force decreases by a factor 1/9:

Since the original force was 36 N, the new force will be
Answer:
The tension force in the supporting cables is 7245N
Explanation:
There are two forces acting on the elevator: the force of gravity pointing down (+) with magnitude (elevator mass) x (gravitational acceleration), and the tension force of the cable pointing up (-) with an unknown magnitude F. The net force is the sum of these forces:

We are given the resulting acceleration along with the mass, i.e., we know the net force, allowing us to solve for F:

The tension force F in the supporting cables is 7245N
Answer:
Explanation:
Given that
F=2x³
Work is given as
The range of x is from x=0 to x=D
W=-∫f(x)dx
Then,
W=-∫2x³dx from x=0 to x=D
W=- 2x⁴/4 from x=0 to x=D
W=-2(D⁴/4-0/4)
W=-D⁴/2
W=1/2D⁴
The correct answer is F