1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
agasfer [191]
3 years ago
5

A spring gun is made by compressing a spring in a tube and then latching the spring at the compressed position. A 4.97-g pellet

is placed against the compressed and latched spring. The spring latches at a compression of 4.60 cm, and it takes a force of 9.12 N to compress the spring to that point. (Note: while the spring is being compressed the ball is not in contact with the spring.) (a) If the gun is fired vertically, how fast is the pellet moving when it loses contact with the spring? (Include the effect of gravity and assume that the pellet leaves the spring when the spring is back to its relaxed length.)
Physics
1 answer:
dimaraw [331]3 years ago
7 0

Answer:

v  = 2.8898 \frac{m}{s}

Explanation:

This is a problem easily solve using energy conservation. As there are no non-conservative forces, we know that the energy is conserved.

When the spring is compressed downward, the spring has elastic potential energy. When the spring is relaxed, there is no elastic potential energy, but the pellet will have gained gravitational potential energy and kinetic energy. Lets see what are the terms for each of this.

<h3>Elastic potential energy</h3>

We know that a spring following Hooke's Law has a elastic potential energy:

E_{ep} = \frac{1}{2} k (\Delta x)^2

where \Delta x is the displacement from the relaxed length and k is the spring's constant.

To obtain the spring's constant, we know that Hooke's law states that the force made by the spring is :

\vec{F} = - k \Delta \vec{x}

as we need 9.12 N to compress 4.60 cm, this means:

k = \frac{9.12 \ N}{4.6 \ 10^{-2} \ m}

k = 198.26 \ \frac{ N}{m}

So, the elastic energy of the compressed spring is:

E_{ep} = \frac{1}{2} 198.26 \ \frac{ N}{m} (4.6 \ 10^{-2} \ m)^2

E_{ep} = 0.209759 \ Joules

And when the spring is relaxed, the elastic potential energy will be zero.

<h3>Gravitational potential energy</h3>

To see how much gravitational potential energy will the pellet win, we can use

\Delta E_{gp} = m g \Delta h

where m is the mass of the pellet, g is the acceleration due to gravity and \Delta h is the difference in height.

Taking all this together, the gravitational potential energy when the spring is relaxed will be:

\Delta E_{gp} = 4.97 \ 10^{-3} kg \ 9.8 \frac{m}{s^2} 4.6 \ 10^{-2} m

\Delta E_{gp} = 0.00224 \ Joules

<h3>Kinetic Energy</h3>

We know that the kinetic energy for a mass m moving at speed v is:

E_k = \frac{1}{2} m v^2

so, for the pellet will be

E_k = \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

<h3>All together</h3>

By conservation of energy, we know:

E_{ep} = \Delta E_{gp} + E_k

0.209759 \ Joules = 0.00224 \ Joules + \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

So

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.209759 \ Joules - 0.00224 \ Joules

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.207519 \ Joules

v  = \sqrt{ \frac{ 0.207519 \ Joules}{ \frac{1}{2} \ 4.97 \ 10^{-3} kg } }

v  = 2.8898 \frac{m}{s}

You might be interested in
Planck’s constant is a ratio between which two quantities?
Readme [11.4K]

Answer: D

Explanation:

7 0
3 years ago
Read 2 more answers
Suppose the student in (Figure 1) is 68kg, and the board being stood on has a 12kg mass. What is the reading on the left scale?
lesantik [10]

The equilibrium conditions allow to find the results for the balance forces are:

  • F₁ = 225.4 N
  • F₂ = 558.6 N

When the acceleration is zero we have the equilibrium conditions for both linear and rotational motion.

            ∑ F = 0

            ∑ τ = 0

           

Where F are the forces and τ the torques.

The torque  is the product of the force and the perpendicular distance to the point of support,

The free-body diagrams are diagrams of the forces without the details of the bodies, see attached for the free-body diagram of the system.

We write the translational equilibrium condition.

           F₁ - W₁ - W₂ + F₂ = 0

We write the equation for the rotational motion, set our point of origin at scale 1, and the counterclockwise turns are positive.

         F₂ 2 - W₁ 1 - W₂ 1.5 = 0\frac{W_1  \ 1 + W_2 \ 1.5}{2}

Let's calculate F₂

         F₂ = \frac{W_1 \ 1 + W_2 \ 1.5 }{2}  

         F₂ = (m g + M g 1.5)/ 2

         F₂ = \frac{(12 + 68 \ 1.5 ) \  9.8}{2}  

         F₂ = 558.6 N

We substitute in the translational equilibrium equation.

         F₁ = W₁ + W₂ - F₂

         F₁ = (m + M) g - F₂

         F₁ = (12 +68) 9.8 - 558.6

         F₁ = 225.4 N

In conclusion using the equilibrium conditions we can find the forces of the balance are:

  • F₁ = 225.4 N
  • F2 = 558.6 N

Learn more here:  brainly.com/question/12830892

5 0
2 years ago
A wind turbine is an example of what kind of device
Liula [17]

Answer:

it’s an example of a generator.

Explanation:

3 0
2 years ago
A baseball bat changes the momentum of a ball with an impulse of 13.8 Nᐧs. What is the average force that the bat exerts on the
vladimir2022 [97]

Answer:

13800 N

Explanation:

Impulse is the product of average force and time expressed as I=Ft where I is the impulse which results into change in momentum, F is the average force and t is the time of impact. Making F the subject of formula then

F=\frac {I}{t}

Substituting I with 13.8 N.s and time, t witg 0.001 s then the average force is calculated as

F=\frac {13.8 N.s}{0.001}=13800N

Therefore, the average force is equivalent to 13800 N

4 0
3 years ago
A conductor carrying a current I = 13.8 A is directed along the positive x axis and perpendicular to a uniform magnetic field. A
Scorpion4ik [409]

Answer:

a) B=0.008 T

b) +z direction

Explanation:

<u>solution:</u>

a) The magnetic force:

        F=i*l*B

Solve for B:  

      B=0.008 T

b) According to the left hand rule, the magnetic field is in the +z direction

3 0
3 years ago
Other questions:
  • For a circuit shown in the figure, all quantities are accurate in 3 significant figures. What is the power dissipated in 2-ohm r
    12·1 answer
  • A circuit with several current paths, whose total current equals the sum of the current in its branches is a _____ circuit.
    15·2 answers
  • How can citizen -scientists help with the prediction of future earthquakes
    10·1 answer
  • You run from your house to a friend's house that is 3 miles away. You then walk home.What distance did you travel?
    5·2 answers
  • Explain why a valve would last longer in the pulmonary position than in the aortic position
    12·1 answer
  • Countries with traditional economies are often less developed because:
    14·2 answers
  • Re word this paragraph; so Its 'put in my own words' try to mix up the places of each sentences too please!
    7·1 answer
  • It took 1500 Newton's of force to push a car 3 meters. How much work was done
    13·1 answer
  • To the speaker makes the sound louder.
    13·1 answer
  • Which metals have similar chemical properties? Check all that apply.
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!