1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
agasfer [191]
3 years ago
5

A spring gun is made by compressing a spring in a tube and then latching the spring at the compressed position. A 4.97-g pellet

is placed against the compressed and latched spring. The spring latches at a compression of 4.60 cm, and it takes a force of 9.12 N to compress the spring to that point. (Note: while the spring is being compressed the ball is not in contact with the spring.) (a) If the gun is fired vertically, how fast is the pellet moving when it loses contact with the spring? (Include the effect of gravity and assume that the pellet leaves the spring when the spring is back to its relaxed length.)
Physics
1 answer:
dimaraw [331]3 years ago
7 0

Answer:

v  = 2.8898 \frac{m}{s}

Explanation:

This is a problem easily solve using energy conservation. As there are no non-conservative forces, we know that the energy is conserved.

When the spring is compressed downward, the spring has elastic potential energy. When the spring is relaxed, there is no elastic potential energy, but the pellet will have gained gravitational potential energy and kinetic energy. Lets see what are the terms for each of this.

<h3>Elastic potential energy</h3>

We know that a spring following Hooke's Law has a elastic potential energy:

E_{ep} = \frac{1}{2} k (\Delta x)^2

where \Delta x is the displacement from the relaxed length and k is the spring's constant.

To obtain the spring's constant, we know that Hooke's law states that the force made by the spring is :

\vec{F} = - k \Delta \vec{x}

as we need 9.12 N to compress 4.60 cm, this means:

k = \frac{9.12 \ N}{4.6 \ 10^{-2} \ m}

k = 198.26 \ \frac{ N}{m}

So, the elastic energy of the compressed spring is:

E_{ep} = \frac{1}{2} 198.26 \ \frac{ N}{m} (4.6 \ 10^{-2} \ m)^2

E_{ep} = 0.209759 \ Joules

And when the spring is relaxed, the elastic potential energy will be zero.

<h3>Gravitational potential energy</h3>

To see how much gravitational potential energy will the pellet win, we can use

\Delta E_{gp} = m g \Delta h

where m is the mass of the pellet, g is the acceleration due to gravity and \Delta h is the difference in height.

Taking all this together, the gravitational potential energy when the spring is relaxed will be:

\Delta E_{gp} = 4.97 \ 10^{-3} kg \ 9.8 \frac{m}{s^2} 4.6 \ 10^{-2} m

\Delta E_{gp} = 0.00224 \ Joules

<h3>Kinetic Energy</h3>

We know that the kinetic energy for a mass m moving at speed v is:

E_k = \frac{1}{2} m v^2

so, for the pellet will be

E_k = \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

<h3>All together</h3>

By conservation of energy, we know:

E_{ep} = \Delta E_{gp} + E_k

0.209759 \ Joules = 0.00224 \ Joules + \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

So

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.209759 \ Joules - 0.00224 \ Joules

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.207519 \ Joules

v  = \sqrt{ \frac{ 0.207519 \ Joules}{ \frac{1}{2} \ 4.97 \ 10^{-3} kg } }

v  = 2.8898 \frac{m}{s}

You might be interested in
If we wanted to describe and better understand the structure of the rings of Saturn, we might develop a
Svetradugi [14.3K]
The Greek philosopher Aristotle and the Roman Catholic Church also believed the sun revolved around the earth. In 1543, Nicolaus Copernicus<span> published a new theory stating the earth revolves around the sun. This is known as the Copernican theory.</span>
6 0
3 years ago
Qwertyuiop hhffhhhhf fiuefhasuhs afbauyhsbvzskhbdv
mars1129 [50]

Answer:

gfhvgtrtjrgvfjrrgfrfftuyrisnhdvfcgfridkjhsybvvtfvjfcgvwjfccegvghcvgrcgvrekgvrkgvkvvrvkvfgkerruuyti

4 0
3 years ago
Read 2 more answers
One degree Celsius indicates the same temperature change as
miss Akunina [59]
The Celsius degree is the same size as the Kelvin.
The correct choice is 'C'.
7 0
3 years ago
When all else remains the same, what effect would decreasing the focal length have on a convex lens?
aniked [119]
<h3>Answer;</h3>

<u>It would make the lens stronger. </u>

<h3>Explanation;</h3>
  • The focal length is the distance between the optical center or the center of the lens to the focal point of a convex or concave lens.
  • The power of the convex lens is lens ability to undertake refraction or bend light. It is given as the reciprocal of focal length.
  • Power of the lens = 1/ f; therefore the smaller the focal length the higher the power and the larger the focal length the lower the power.
  • Thus; decreasing the focal length of a convex lens makes the lens stronger.

4 0
3 years ago
Read 2 more answers
The rate at which an object moves is the object's __________.
11111nata11111 [884]

Answer:

speed

Explanation:

4 0
3 years ago
Read 2 more answers
Other questions:
  • A flask that weighs 345.8 g is filled with 225 mL of carbon tetrachloride. The weight of the flask and carbon tetrachloride is f
    10·1 answer
  • A spring is stretched to a displacement of 3.4 m from equilibrium. Then the spring is released and allowed to recoil to a displa
    14·1 answer
  • Where is the most of the liquid freshwater on earth located?
    15·2 answers
  • According to the kinetic molecular therory, the pressure of a gas in a container will increase if the
    14·1 answer
  • In a sine curve, like a water wave, the high points are the crests and the low points are the (blank)
    6·1 answer
  • An astronaut has a momentum of 280 kg and travels 10 m/s. what is the mass of the astronaut?
    7·1 answer
  • What is the relationship between the electric force and each one of the charges?
    13·1 answer
  • Which statements are true about the speed of a wave?
    7·2 answers
  • What happens when two sound waves meet in destructive interference?
    14·1 answer
  • Which of the following statements best describes chromatic aberration?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!