Answer:
220 A
Explanation:
The magnetic force on the floating rod due to the rod held close to the ground is F = BI₁L where B = magnetic field due to rod held close the ground = μ₀I₂/2πd where μ₀ = permeability of free space = 4π × 10⁻⁷ H/m, I₂ = current in rod close to ground and d = distance between both rods = 11 mm = 0.011 m. Also, I₁ = current in floating rod and L = length of rod = 1.1 m.
So, F = BI₁L
F = (μ₀I₂/2πd)I₁L
F = μ₀I₁I₂L/2πd
Given that the current in the rods are the same, I₁ = I₂ = I
So,
F = μ₀I²L/2πd
Now, the magnetic force on the floating rod equals its weight , W = mg where m = mass of rod = 0.10kg and g = acceleration due to gravity = 9.8 m/s²
So, F = W
μ₀I²L/2πd = mg
making I subject of the formula, we have
I² = 2πdmg/μ₀L
I = √(2πdmg/μ₀L)
substituting the values of the variables into the equation, we have
I = √(2π × 0.011 m × 0.1 kg × 9.8 m/s²/[4π × 10⁻⁷ H/m × 1.1 m])
I = √(0.01078 kgm²/s²/[2 × 10⁻⁷ H/m × 1.1 m])
I = √(0.01078 kgm²/s²/[2.2 × 10⁻⁷ H])
I = √(0.0049 × 10⁷kgm²/s²H)
I = √(0.049 × 10⁶kgm²/s²H)
I = 0.22 × 10³ A
I = 220 A
Using V= vo +at with Vo = 0 and a= 4m/sec2.
V= 0+ 4x8= 32m/s
Since my givens are x = .550m [Vsub0] = unknown
[Asubx] = =9.80
[Vsubx]^2 = [Vsub0x]^2 + 2[Asubx] * (X-[Xsub0]
[Vsubx]^2 = [Vsub0x]^2 + 2[Asubx] * (X-[Xsub0])
Vsubx is the final velocity, which at the max height is 0, and Xsub0 is just 0 as that's where it starts so I just plug the rest in
0^2 = [Vsub0x]^2 + 2[-9.80]*(.550)
0 = [Vsub0x]^2 -10.78
10.78 = [Vsub0x]^2
Sqrt(10.78) = 3.28 m/s