The Nernst equation allows us to predict the cell potential for voltaic cells under conditions other than the standard conditions of 1M, 1 atm, 25°C. The effects of different temperatures and concentrations may be tracked in terms of the Gibbs energy change ΔG. This free energy change depends upon the temperature & concentrations according to ΔG = ΔG° + RTInQ where ΔG° is the free energy change under conditions and Q is the thermodynamic reaction quotient. The free energy change is related to the cell potential Ecell by ΔG= nFEcell
so for non-standard conditions
-nFEcell = -nFE°cell + RT InQ
or
Ecell = E°cell - RT/nF (InQ)
which is called Nernst equation.
Answer:
ano poh paki ult kasi hindi mahintindihan yan question mo hindi mahintindihwn
The molality of the solution is obtained as 0.63 m.
<h3>What is the freezing point?</h3>
The freezing point is the temperature at which the liquid is converted into solid.
We know that;
ΔT = 3.5° C
K = 1.86° C/m
i = 3
m = ?
Thus;
ΔT = K m i
m = ΔT/K i
m = 3.5° C/ 1.86° C/m * 3
m = 0.63 m
Learn more about freezing point:brainly.com/question/3121416
#SPJ1
Answer:c it’s dropped off in the kidneys
Explanation:
I took the quiz
Answer:
Electrons are far apart from the nucleus as we move down the group.
Explanation:
The ionization energy is the amount of energy which is necessary to remove an electron from an atom.
In an atom there exist a force of attraction at the center (nucleus). This is because of the positive charge which exists in the nucleus. This force of attraction is less felt as the distance between the electron and the proton increases. Hence the ionization energy increases as the number of shells increases for an atom. As we move down the group in the periodic table, the number of shells increases which implies a decrease in ionization energy.