30 kg m/s
momentum = mass x velocity = 10 x 3 m/s =30 kg m/s
Heat; rather, or change of the molecules to make them move faster
Your answer should be C.) +2. "All the elements in Group 2 have two electrons in their valence shells, giving them an oxidation state of +2."
Credits: https://chem.libretexts.org/Core/Inorganic_Chemistry/Descriptive_Chemistry/Elements_Organized_by_Blo...
Hopefully this has helped! :)
Since both atoms are the same and are both nonmetals, they would form a Nonpolar covalent bond. This bond occurs when usually atoms of the same element or atoms of propriety electronegativity differences are sharing electrons to form bonds. There is an equal sharing of valence electrons in this chemical bond.
Answer : The rate law for the overall reaction is, ![Rate=k[NO]^2[H_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BNO%5D%5E2%5BH_2%5D)
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
As we are given the mechanism for the reaction :
Step 1 :
(slow)
Step 2 :
(fast)
Overall reaction : 
The rate law expression for overall reaction should be in terms of
.
As we know that the slow step is the rate determining step. So,
The slow step reaction is,

The expression of rate law for this reaction will be,
![Rate=k[NO]^2[H_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BNO%5D%5E2%5BH_2%5D)
Hence, the rate law for the overall reaction is, ![Rate=k[NO]^2[H_2]](https://tex.z-dn.net/?f=Rate%3Dk%5BNO%5D%5E2%5BH_2%5D)