Number:1,2,3,4,5,6 Frequency:4,6,x+5,x,2x,5 What is x and find the mean?
Paraphin [41]
Warning! Off topic question!
Step-by-step explanation:
I'm really sorry cuz this question has nothing to do with ur previous question. I just wanted to ask do u speak native German or fluent German cuz I have a very important test tomorrow and I'll really appreciate any help I can get. Sorry once again
Direct variation is y = kx
Inverse variation is y = k/y
if z varies directly with x, then the equation would be z = kx
if z varies inversely with y^2 then the equation would be z = k/y^2. Combining, these two, we have z = kx/y^2
We use the first set of values to find the constant k:
x = 2, y = 5, z = 8:
8 = 2x/25, k = 100. Now we use the second set of values to find z:
x = 4, y = 9, k = 100 and z is unknown:
z = (4X100)/9^2
z = 400/81--> this is your final final answer.
*plz rate brainliest
Yes. Conceptually, all the matrices in the group have the same structure, except for the variable component
. So, each matrix is identified by its top-right coefficient, since the other three entries remain constant.
However, let's prove in a more formal way that
![\phi:\ \mathbb{R} \to G,\quad \phi(x) = \left[\begin{array}{cc}1&x\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cphi%3A%5C%20%5Cmathbb%7BR%7D%20%5Cto%20G%2C%5Cquad%20%5Cphi%28x%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26x%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20)
is an isomorphism.
First of all, it is injective: suppose
. Then, you trivially have
, because they are two different matrices:
![\phi(x) = \left[\begin{array}{cc}1&x\\0&1\end{array}\right],\quad \phi(y) = \left[\begin{array}{cc}1&y\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cphi%28x%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26x%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%2C%5Cquad%20%5Cphi%28y%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26y%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20)
Secondly, it is trivially surjective: the matrix
![\phi(x) = \left[\begin{array}{cc}1&x\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cphi%28x%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26x%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20)
is clearly the image of the real number x.
Finally,
and its inverse are both homomorphisms: if we consider the usual product between matrices to be the operation for the group G and the real numbers to be an additive group, we have
![\phi (x+y) = \left[\begin{array}{cc}1&x+y\\0&1\end{array}\right] = \left[\begin{array}{cc}1&x\\0&1\end{array}\right] \cdot \left[\begin{array}{cc}1&y\\0&1\end{array}\right] = \phi(x) \cdot \phi(y)](https://tex.z-dn.net/?f=%20%5Cphi%20%28x%2By%29%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26x%2By%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26x%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%5Ccdot%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%26y%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cphi%28x%29%20%5Ccdot%20%5Cphi%28y%29)
Answer:
1073.38
Step-by-step explanation:
975 × 0.01 = 9.75
9.75 + 975 = 984.75
984.75 × 0.09 = 88.6275
88.6275 + 984.75 = <u>1073.38</u>