The probability that exactly 4 of the selected adults believe in reincarnation is 5.184%, and the probability that all of the selected adults believe in reincarnation is 7.776%.
Given that based on a poll, 60% of adults believe in reincarnation, to determine, assuming that 5 adults are randomly selected, what is the probability that exactly 4 of the selected adults believe in reincarnation, and what is the probability that all of the selected adults believe in reincarnation, the following calculations must be performed:
- 0.6 x 0.6 x 0.6 x 0.6 x 0.4 = X
- 0.36 x 0.36 x 0.4 = X
- 0.1296 x 0.4 = X
- 0.05184 = X
- 0.05184 x 100 = 5.184
- 0.6 x 0.6 x 0.6 x 0.6 x 0.6 = X
- 0.36 x 0.36 x 0.6 = X
- 0.1296 x 0.6 = X
- 0.07776 = X
- 0.07776 x 100 = 7.776
Therefore, the probability that exactly 4 of the selected adults believe in reincarnation is 5.184%, and the probability that all of the selected adults believe in reincarnation is 7.776%.
Learn more in brainly.com/question/795909
(x+4)^2 / 9 - (y+3)^2 / 16 = 1
a^2 = 16 and b^2 = 9
a = +4 and -4
b = +3 and -3
Center is (-4, -3)
Vertices is (-4 + a, -3) and (-4 - a, -3)
Vertices is (-1, -3) and (-7, -3)
Answer:
Four tickets and four snacks comes to a total of $74.00
If she buys x snacks, that cost is 4.50x. so the total for 4 tickets and unknown snacks is 4(14) + 4.5x
Step-by-step explanation:
Nicole + 3 kids is 4 tickets times $14. 4×14=56. Add the snacks. 4×4.50=18. $56+$18=$74