Answer:
.................... protons :)
Answer:
Explanation:
mass m = 3 kg
spring constant be k
k x .8 = 40 N
k = 40 / .8 = 50 N /m
angular frequency ω = √ ( k / m )
= √ ( 50 / 3 )
= 4.08 rad /s
Let amplitude of oscillation be A .
1/2 k A² = 1/2 m v²
50 A² = 3 x 1²
A = .245 m = 24.5 cm
For displacement , the equation of SHM is
x = A sinωt
= 24.5 sin4.08 t
x = 24.5 sin4.08 t
Here, angle 4.08 t is in radians .
Answer:
(A) Reading will be 65 N
(B) Net force on the elevator will be 49.076 N
Explanation:
We have given the balance force = 65 N
Acceleration due to gravity 
We know that W=mg
So 
m = 6.632 kg
(a) In first case as the as the speed is constant so the force on the elevator will be 65 N
(B) In second case as the elevator is decelerating at a rate of 
So net acceleration = 9.8-2.4=
So net force on elevator will be = m× net acceleration = 6.632×7.4 = 49.076 N
D.6.22N. because .42kg * 14.8m/s=6.22 N[meaning newtons}.
To solve the problem it is necessary to apply the concepts related to Byle's Law and Avogadro's Law.
The ideal gas equation would help us find the final solution to the problem, defined by

Where,
T= Temperature of the gas
R = Universal as constant
n = number of moles
V = Volume
P = Pressure
For our case we have that the mass of Zn is 2.2g in moles would be
[/tex]

We know that 1 mole of hydrogen gas is proceed by 1 mole of zinc and the result is
, then Hydrogen can produce the same quantity,

Applying the previous equation we have that



Therefore the volume of hydrogen gas is collected is 0.829L