Answer:
48.51ms / 174.6 km/h
Explanation:
y = 1/2 x g x t^2 v = g x t
when y = 120m
120 = 1/2 x 9.8 x t^2
t^2 = 24.49
t = 4.95s
when t = 4.95s
v = 9.8 x 4.95
v = 48.51 m/s = 174.6 km/h
I'd say its realistic. But I don't really know that sry
Answer:
Explanation:
The cross product of two vectors is given by

Where, θ be the angle between the two vectors and \widehat{n} be the unit vector along the direction of cross product of two vectors.
Here, K x i = - j
As K is the unit vector along Z axis, i is the unit vector along X axis and j be the unit vector along axis.
The direction of cross product of two vectors is given by the right hand palm rule.
So, k x i = j
j x i = - k
- j x k = - i
i x i = 0
Drop "moves" from the list for a moment.
You can also drop "stops moving", because that's included in "changes speed"
(from something to zero).
When an object changes speed or changes direction, that's called "acceleration".
I dropped the first one from the list, because an object can be moving,
and as long as it's speed is constant and it's moving in a straight line,
there's no acceleration.
I think you meant to say "starts moving". That's a change of speed (from zero
to something), so it's also acceleration.
Answer:
2.78 m
Explanation:
At the peak, the velocity is 0.
Given:
a = -1.6 m/s²
v₀ = 2.98 m/s
v = 0 m/s
x₀ = 0 m
Find:
x
v² = v₀² + 2a(x - x₀)
(0 m/s)² = (2.98 m/s)² + 2(-1.6 m/s²) (x - 0 m)
x = 2.775 m
Rounded to 3 sig-figs, the astronaut halloweener reaches a maximum height of 2.78 meters.
<span>The primary gases of the atmosphere are _____:
</span>
nitrogen, oxygen, and carbondioxide