Answer:
vi = 4.77 ft/s
Explanation:
Given:
- The radius of the surface R = 1.45 ft
- The Angle at which the the sphere leaves
- Initial velocity vi
- Final velocity vf
Find:
Determine the sphere's initial speed.
Solution:
- Newton's second law of motion in centripetal direction is given as:
m*g*cos(θ) - N = m*v^2 / R
Where, m: mass of sphere
g: Gravitational Acceleration
θ: Angle with the vertical
N: Normal contact force.
- The sphere leaves surface at θ = 34°. The Normal contact is N = 0. Then we have:
m*g*cos(θ) - 0 = m*vf^2 / R
g*cos(θ) = vf^2 / R
vf^2 = R*g*cos(θ)
vf^2 = 1.45*32.2*cos(34)
vf^2 = 38.708 ft/s
- Using conservation of energy for initial release point and point where sphere leaves cylinder:
ΔK.E = ΔP.E
0.5*m* ( vf^2 - vi^2 ) = m*g*(R - R*cos(θ))
( vf^2 - vi^2 ) = 2*g*R*( 1 - cos(θ))
vi^2 = vf^2 - 2*g*R*( 1 - cos(θ))
vi^2 = 38.708 - 2*32.2*1.45*(1-cos(34))
vi^2 = 22.744
vi = 4.77 ft/s
Answer:
Change in electric potential energy is -28.0 J
Explanation:
Electric potential energy is defined as the work is done to move a charge particle from one position to another in space in the presence of other charge particle or electric potential.
OR
Electric potential energy is also equal to the change in the configuration of the charge particles.
Thus,
Change in electric potential energy = - Work Done
According to the problem, Work Done is equal to 28 J. Thus,
Change in electric potential energy = -28 J
Answer:
I think it's C!
Explanation:
Sound waves travel at 343 m/s through the air and faster through liquids and solids. The waves transfer energy from the source of the sound, e.g. a drum, to its surroundings. Your ear detects sound waves when vibrating air particles cause your eardrum to vibrate. The bigger the vibrations the louder the sound.
Hope this helps!
Answer:
hope this answer helps you.